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Abstract: - This paper presents an architecture of a triple -mode floating-point adder that supports higher 
precision and parallel lower precision addition. The proposed design can work in three modes: four parallel 
single precision or two parallel double precision or one quadruple precision addition/subtraction. The proposed 
triple-mode adder’s parallel co mputation in low er precision can be ap plied in SIMD applicat ion to 
accommodate 3D graphics, video conferencing and multim edia fields while its high precision computation can 
be applied in scientific applications such as supernov a simulations, climate modeling and etc. To im prove the 
performance of the triple-mode floating-point adder, the design is implemented with the i mproved two-path 
algorithm in co mbinational and pipeline form . To compare area, power and worst-ca se latency, single-mode 
single, double, quadruple and dual-mode quadruple precision floating-point adders are also implemented using 
the similar techniques. These adders and the triple- mode adder are tested and verified through extensive 
simulation and then synthesized with 65nm manufacture process. The synthesis results show that the proposed 
triple-mode floating-point adder requires 10-16% more delay than a single-mode quadruple precision adder and 
saves 47-52% area compared to the combination of four single, two double and one quadruple precision adders. 
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1 Introduction 
Floating-point arithmetic is a key part of  CPU, GPU 
and DSP chi ps for its fre edom from overflow and 
underflow and ease of using to programmers. Today 
many general purpose processors offe r hardware 
video decoding, image processing and 3D  
functionality by executing SIMD instructions such 
as Intel’s AVX, SSE3 and SSE4 [1,2]. Most of these 
SIMD instructions are floating-point  arithmetic 
related and directly  executed through two or m ore 
parallel single precision floating-poi nt units (FPU). 
For image processing and 3D video ga me, a large 
number of single precision floating- point operations 
are executed through many parallel FPUs in graphic 
chips [3]. NVIDIA’s GTX680 with Kep ler 
architecture has 1536 cores in a single die and 
AMD’s HD7970 with GCN architecture has 2048  
cores and each core comprises 5 FPUs [4].  Besides 
the traditional applications of SIMD, [ 4] uses SIMD 
instructions of GPU to accelerate encryption; [5] 
uses GPU and SIMD instruction of CPU to 
accelerate Viterbi decoding in wireless  
communication; parallel SIMDs are even used in 
bioinformatics [6]. Juan M. Cebrian [ 7] pointes out 
in his resea rch work that power ef ficiency of 
parallel FPUs is higher than that of multi-core and .  

Single-precision FPU is useful for SIMD, but low 
precision makes it not  able to s upport some 
scientific applications. Although higher precision 
arithmetic can be implemented by sof tware, it is 
reported that hardware im plementation of a 
quadruple precision FPU is approximately 200 times 
faster than that of softwar e implementation [8]. For 
scientific applications, h igher precision fl oating-
point computation is needed, which is another trend.  
D.H.Bailey [9] and G. H owell [10] describes th e 
necessity that higher precision arithmetic is useful 
for a variet y of situatio ns including ill-conditioned 
linear systems, large scale si mulation etc. Although 
64-bit IEEE [11] arithmetic is sufficient for those 
situations [10], supernova simulation and clim ate 
modeling still need higher precision su ch as 128-bit 
floating-point arithmetic. E.Schwarz [12] presents in 
their paper that quadr uple precision (1 28-bit) 
floating-point unit can  be im plemented in a 
reasonable amount of hardware co mpared to double 
precision.  

In the past decade, the soft ware and hardware has 
gradually transformed from 32-bit to 6 4-bit. Today, 
from personal devices such as PC, mobile phone to 
enterprise workstation, from software t o hardware, 
64-bit has be come very universal, so making FPU 
supporting 64-bit is also necessary. 
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Since the most frequent operation--f loating-point 
addition, takes 55% of all five basi c arithmetic 
operations specified by  IEEE754-2008 [11], much 
research and many papers have proposed efficient 
floating-point addition algorithms and architectures 
[14-25].  

Currently, most floating-point addition 
(subtraction) units in modern m icroprocessor are 
implemented in two-path algorithm [14-15]. With 
the same manufacturing technology, adder 
implemented with the tw o-path algorithm is faster 
but consumes more area and power, c ompared to 
single-path algorithm. As the feature size of CMOS 
transistor continually shrinks, the transistor beco me 
faster and less power consum ing, so th e advantage 
of single-path algorithm in area and power over 
two-path algorithm is no more important.  

As described above, to support SIMD, scientific 
and 64-bit applications, designing a triple-mode 
quadruple precision floating-point adder for general 
purpose processor is necessary. 

Several literatures present dual-m ode floating-
point unit including adde r, multiplier, divider and 
multiply-add fused (MAF). A. Akkas presents a 
dual-mode precision floating- point adder in [26-27], 
a dual-mode floating-point multiplier in [28-29] and 
a dual-mode floating-point divider in [30]. [31] 
presentes a dual-mode double precision floating-
point adder with single-path algorithm. [32] presents 
a 80-bits m ultiplier which can perform one 80-bit  
multiplication in 5 cycles, or one 64-bit 
multiplication in 4 cy cles or two p arallel 32-bit 
multiplications in 2 c ycles. Ray C.C. Cheung [33] 
designed a dual-m ode divider p erforms one 
double/two single precision division. K. 
Manolopoulos [34] presents a triple-mode multiplier 
that can perform  single, double and quadruple 
precision multiplication. Baluni [35] presents a fully 
pipelined dual-mode floating-point multiplier.  Libo 
Huang [36] and K. Manolopoul os [37] respectively 
presents a dual- mode floating point MAF unit that 
can perform one double precision multiply-add (MA) 
operation or two single precision MAs. [38] presents 
a multi-functional MAF that can perform one 
double precision MA, or two single precision dot  
products. 

In this paper, we present  a single- mode and a 
triple-mode quadruple precision floating-point adder. 
Our proposed designs support all f our rounding 
modes and exceptions specified by  IEEE754-2008, 
but does not support sub-normal number. 

Section 2 describes the proposed delay -efficient 
architecture of a single-m ode quadruple precision 
adder implemented with two-path al gorithm. The 
architecture is described in pipeline for m and the  

specific details of circuit i mplementation of each  
component is also presented. The  synthesized 
results of its corresponding combinational circuit is  
presented in Section 4.  

In Section 3 , we design a triple-m ode quadruple 
precision adder by modifying the architecture of the  
single-mode adder in Section 2. For comparison, we 
also implemented single-mode single, do uble and 
dual-mode quadruple precision adders using the  
similar techniques. All the adders with both 
combinational and pipeline for ms are implemented 
in Verilog-HDL, and verified throug h extensive 
simulations.  

In Section 4, the s ynthesized results of single-
mode single, dou ble, quadruple, dual-mode 
quadruple and triple-mode quadruple precision 
floating-point adders are presented and compared. 
 
 

2 Single-Mode Quadruple Precision 
Floating-Point Adder 
The proposed design has three pipeline s tages and is 
described in section 2.1, 2.2 and 2.3 for each stage  
respectively.  
 
 
2.1 Stage 1 
Fig.1 shows the first stage of the propos ed pipelined 
architecture of the quad ruple precision floating-
point adder. D1 and D2 are the two operands, op is 
the initial operation and t he 2-bit signal rm is the  
rounding control signal. The rounding modes are as 
following: rm=0, round to nearest even; rm=1, 
round to positive infinit y; rm=2, round to negative 
infinity; rm=3, round to zero. 

The functionality of  the fi rst stage is to com pare 
exponents of D1 and D2, swap mantissas of D1 and 
D2, determine the sign of the result and the effective 
operation eff_op in FAR  path, and compute the 
mantissa difference in CLOSE path. When eff_op 
equals to 1, the effective operation is subtraction. 

In FAR path, the EXP_DIFF block in this stage 
produces two signals: swap and exp_diff which is 
the absolute value of the difference of exp1 and 
exp2. OR1 and OR2 blocks are two OR gates to 
generate the hidden leading bit of m antissas. If the 
exponent equals to zero,  the hidden leading bit 
hd_bit1 (or hd_bit2) is 0, otherwise is 1. The 
EXP_DIFF block is im plemented using a flagged  
parallel prefix adder (FPPA1) which can co mpute 
|A-B|. The EXP_DIFF block does no t contain a  
comparator. The details of a FPPA1 is shown in [20]. 
When swap equals to 0, exp1 is less tha n exp2, the 
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greater mantissa {hd_bit2, frac2} is selected 
through MUX1 to obtain  frac_large; the smaller 
mantissa {hd_bit1,frac1} is selected through MUX2 
to obtain frac_small. When swap equals to 1, the  
opposite operation occurs as illustrated in Fig.1. The 
greater exponent is multiplexed through EXP_MUX. 
The exp_diff is a 15-bit num ber and adjusted to 7  
bits through EXP_DIFF_ADJ block. The circuit o f 
EXP_DIFF_ADJ block is shown in Fig. 2(a). If the 
high order bits exp_diff[14:7] is not 0, which means 
exp_diff is greater than 127, then align_num is 127, 
otherwise align_num is exp_diff[6:0]. In the process 
of alignment, frac_small can be right shifted at most 
116 bits, so 7 bits is sufficient to h old a number that 
is greater than or equal to 116. Anot her objective of 

adjusting the exponent diff erence is to decrease the 
delay of ALIGN block. The ALIGN block 
accomplishes the task of right shifting frac_small by 
the align_num bits. The alignm ent shift block 
ALIGN is generally  implemented using a barrel  
shifter which is com posed of seve ral levels of 
multiplexers. When the width of the shifting number 
is 15 bits, the delay of a barrel shifter is 15 times the 
delay of a multiplexer and the area is 15 tim es the 
area of one level of m ultiplexers. That is why  we 
need to adjust the 15-bit exp_diff to 7-bits  
align_num. The SIGN_FAR block is used to produce 
the sign signal sign_f of FAR path and its circuit is 
shown in Fi g. 2(b). T he Nan&Inf_DETECT block 
receives eff_op, exponents and mantissas of the two  

D1 D2

126‐‐‐‐‐‐‐‐‐112 126‐‐‐‐‐‐‐‐‐112111‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐0 111‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐0

exp1 15 frac2 112
frac1 112 1sign2

EXP_DIFF

(|exp1 – exp2|, FPPA1)

0               1 0               1 0                 1

15exp_large 113frac_large 113frac_small

swapEXP_MUX MUX2MUX1

1sign1

exp2 15

op

113 113 113 113

exp2 15

exp1 15

swap

1eff_op

0              1 0              1

MUX3 MUX4

1

0 10 1
1

frac1
[1
1
1]

e
xp
2
[0
]

e
xp
1
[0
]

frac2
[1
1
1]

frac2
[1
1
1]

e
xp
2
[0
]

e
xp
1
[0
]

frac1
[1
1
1]

frac1[111:1] frac2[111:1]

frac1[111:0] frac2[111:0]

EXP_DIFF_ADJ

1swap 15

ALIGN

LZA_POS LZA_NEG

ADDER_CLOSE
(FPPA1)LZC_POS LZC_neg

1               0

113lza_pos 113lza_neg

7 7norm_neg

7norm_num

113 113

SING_FAR

fign_f 1

op

sign1 sign2

swap

7

PATH_GEN

e
ff_

o
p

sw
ap

exp_diff

align_num

align
_
n
u
m

frac2
[1
1
1]

frac1
[1
1
1]

MUX5

norm_pos

eff_op sign_f

1 1

exp_large

15

frac_
large

113

113

frac_align g_f r_f s_f

1 1 1

except

1

path_sel

2 113 1131

cout_c S_c SP1_cnorm_num

2

rm

2

rm

1
1

ena1
ena2

1 1

sign_c g_c

OR1 OR2

11hd_bit1 hd_bit2

NaN
&Inf
_DE
TEC
T

hd_bit1,hd_bit2,eff_op,frac1,frac2

mant2mant1

A B

Fig. 1 The logics of the first stage of the proposed single-mode quadruple precision floating-point adder 
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operands to determine whether the result is infi nity 
or a NaN. To share logic , the hd_bit1 and hd_bit2 
are passed to this block. When D1 and D2 are both 
infinity and the effective operation is  subtraction 
(eff_op=1), the result is  a NaN ( res_is_nan=1); 
when one of the two operands is NaN, the result is a 
NaN(res_is_nan=1); when one opera nd is infinit y 
and the othe r is a normal num ber, the result is 
infinity (res_is_inf=1). To make the Figure clear, we 
use a 2-bit signal except ={res_is_nan, res_is_inf} 
to represent exceptions as illustrated in Fig. 1. 

In CLOSE path:  
1) When exp1=exp2, exp1[0] definitely equals 

to exp2[0], then ena1 and ena2 is 0,  both 
mantissas {1,frac1} and { 1,frac2} remain 
unchanged through MUX3 and MUX4.  

2) When {frac1[111], frac2[111]} is 01 and 
exp1≠exp2, ena2 is 1, ena1 is 0, {1,frac1} 
remains unchanged through MUX3, {1,frac2} 

is right shifted by one bit through MUX4, the 
difference S_c(or SP1_c) of the  two 
mantissas has more than two leading zeros: 
(A) if exp1-exp2=1, S_c is the right result, so 
path_sel turns into 1; (B)  if exp1-exp2=-1, 
the right result should be s elected from FAR 
path, path_sel turns into 0; in this case, 
frac_large={1,frac2}, frac_small={1,frac1}, 
after aligning frac_small, the difference of 
frac_large and frac_align has at most two 
leading zeros.  

3) If {frac1[111], frac2[111]} is 10, the  
mechanism is just the opposite in step 2). 

The PATH_GEN block is shown in  Fig. 2(c).  
When the exponents difference align_num is 0 o r 1 
and eff_op is 1 and { swap, frac1[111],frac2[111]} 
is 101 or 010, path_sel is 1. The reason is explained 
in step 1), 2) and 3) above. 
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Fig. 2.  The circuit of components in the first stage 
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In our proposed design, we used two-way leading 
zero detection (LZD) to count the number of leading 
zeros. The LZD func tionality is implemented 
through a le ading zero a nticipating (LZA) and a 
leading zero counting (L ZC) logic. To obtain the  
difference of two m antissas, a 113-bit flagge d 
parallel prefix adder (FPPA1) is used. As illustrated 
in Fig.1, the  shifted and inverted m antissa mant2 
and mant1 are passed to LZA_POS and 
ADDER_CLOSE blocks, and the  shifted an d 
inverted mantissa mant1 and mant2 are passed to  
LZA_NEG block. In the  case that mant1 is less than 
mant2, the leading zero num ber norm_pos detected 
by LZA_POS and LZC_POS is false, but norm_neg 
is true. In the later situation, the signal cout_c is 0, 
so the correct leading zero num ber norm_num can 
always be obtained through MUX5. The LZC 
circuits are d escribed in detail in [22, 24-25]  and 
[21], but we choose [21]’s method for LZC logic 
since it is easier to be m odified to implement multi-
mode leading zero detection. We choose [ 23]’s 
method for LZA logic since it is faster and less area 
consuming compared to [22, 24- 25]. If using one-
way LZA-LZC, in the case of exp_diff equaling to 0, 
we have to use a 113-bit comparator to compare the 
two mantissas before LZA, which would introduce a 
large amount of delay and area. The correct leading 
zero number of our used method is always one less 
than or equal to the exact result. To correct the LZA 
error, the mantissas diffe rence after normalization 
needs to be left shifted by one or zero bit.  Paper [39] 
proposed LZA circuit which can obtain the exact 
leading zero num ber and need no  LZA error 
correction, but have 25% more delay and 67% more 
area than its parallel add er in 128-bit . Paper [40] 
proposed a LZA error correcting circuit tha t 
consume less power an d area, but  the delay 
increases as the bit width grows. The logic level of 
LZA error correcting circuit in [ 40] is 3log2n+8, 
which is far greater than the logic level of the adder 
tree (log2n+2) in CLOSE path. Paper [25] proposed 
a faster LZA correction circuit, but its area is about 
two times of one LZD (LZA+LZC). S o the area o f 
LZD in [25] exceeds the area of two-way  LZD. 
Compared to [ 25, 39-40], our proposed two-way 
LZD can obtain the best trade- off in delay and area.  

The ADDER_CLOSE block is implemented using 
a FPPA1 which co mputes A+ܤത(A-B-1), A+ܤത+1(A-
B), and B-A. The detail of a FPPA1 is shown in [20]. 
When cout_c is 1, the output sum S_c of CLOSE 
path is A+ തܤ  and the SP1_c equals to 
S_c+1(A+ܤത+1); when cout_c is 0, S_c is equal to 

SP1_c (B-A). A and B are the two inputs of FPPA1.  
 
 
2.2 Stage 2 
The functionality of the second stage is to compute 
the sum/difference of mantiss as of FAR path, 
generate the guard, round and sticky bit of FAR path, 
round and normalize the difference of mantissas of 
CLSOE path. Fig. 3 sh ows the details of the second  
stage.  

The ADDER_FAR block is used to co mpute the 
sum/difference. When the effe ctive operation is 
addition and the rounding mode is rounding toward  
to positive or negative infinity, A+B+2 also need to 
be computed [18]. We designed a new flagged 
parallel prefix adder (FPPA2) that is different to the  
one presented in [ 20]. Our designed FPPA2 can 
compute A+B, A+B+1, A+B+2, A+ܤത , A+ܤത +1, 
A+ തܤ +2 and B-A. For two operands A={an-

1,..,a2,a1,a0} and B={bn-1,..,b2,b1,b0}, the flag signal  
flag2={fn-1,..,f2,f1,f0} for obtaining A+B+2 is 
produced from the two signals G={gn-1,..,g2,g1,g0} 
and P={pn-1,..,p2,p1,p0}: gi=aibi, pi=ai^bi (i=0,1,2…); 
f0=0, f1=1, f2=p1^g0, fi=(pi-1^gi-2)fi-1 (i>2). Suppose 
the sum of A and B is S (S=A+B), then S+2 can be 
obtained using the following formula: S+2=S^flag2 
(si^fi). The “” means AND operation and “^” means 
XOR operation. The flag signal flag1 for obtaining 
A+B+1 is the sa me as described in [20 ] and 
S+1=S^flag1. To the author ’s knowledge, the 
FPPA2 is t he first time designed and used in 
floating-point adder. The  literature [14-18, 26-27, 
31] all used a co mpound adder to im plement S+2. 
Compared to compound adder, our designed FPPA2 
saves the extra row of half-adders, which in turn 
decreases the delay of the critical path. The S, S+1 
and S+2 of FAR path is denoted as S_f, SP1_f and 
SP2_f in Fig. 3. 

The GRS_LOGIC block is used to generate the 
guard, round and sticky bit of the final result and its 
circuit is shown in Fig. 2(d). The RM_DEC block is 
used to decode the rounding mode. When rm equals 
to 0, the signal rd_near indicating round toward 
nearest even is activated; when rounding m ode is 
round toward positive i nfinity (rm=1) and the sign 
is positive (sign_c=0 or sign_f=0), or round toward 
negative infinity (rm=2) and the si gn is negative  
(sign_c=1 or sign_f=1), the signal up_f indicating 
rounding toward infinity is activated. The circuit of 
RM_DEC is shown in Fig. 2(e).  

Since the result S+1(SP1_c) and the result S (S_c) 
of CLOSE p ath has been com puted, the roun ding 
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process is executed through ROUDN_CLOSE block 
before normalization. [18] presente s the rounding 
mode. The rounded  result is a 114-bit signal an d 
denoted as frac_round_c. The circuit of 
ROUDN_CLOSE block is shown in Fig. 2(f). Since 
the mantissa of CLOSE path is right s hifted by one 
or zero bit through MUX3 and MUX4, the round and 
sticky bit is  0, the guard bit is just the LSB of 
mantissa {1,frac1} ({1,frac2}) or 0. g_c is the guard 
bit and is not drawn in stage1 for clarity. 

The NORMALIZATION block is used to  
normalize the rounded re sult of CLOSE path and 
implemented with a traditional barrel shifter. As 
mentioned earlier, the normalized re sult need an 
extra 1 bit left shifting to c orrect the LZA error. As 
illustrated in Fig. 3, if t he MSB of frac_norm—
MSB_c is 0, frac_norm is left shifted  by one bit 
through MUX6, otherwise the mantissa remains 
unchanged. 
 
 
2.3 Stage 3  
In the third stage, the exponents of b oth paths are 
adjusted, the mantissa su m of FAR path is rounded 
and exception is determ ined. Fig . 4 shows the 
details of the third stage.  

The rounding of m antissa sum of FAR path is 

completed through the ROUND_FAR block. As we 
stated in stage1 step 2), when the effective operation 
is subtraction and the tw o high bits of the rounded 
result is 00, the rounded result need to be left shifted 
by two bits. This leads to a different roundin g mode 
compared to general rounding m ode [18] in FAR 
path. For example, When grs=011, no carry can be 
propagated to the LSB of S_f because g equals to 0,  
the high order bits is selected as S. In this situation, 
if MSB=1, the result S_f needs no left s hifting, there 
is no carr y propagated to LSB of S; if MSB=0, 
sMSB=1, the result S_f needs left shifting by one bit, 
after left shifting, g become the new least significant 
bit of the result, and cause rs=11, there is a carry 
propagated to g which turns g from 0 to 1; if MSB=0, 
sMSB=0, the result S needs left shifting by two bi ts, 
g and r are shifted into the result, and cause s=1 and 
r=1, there is a carry propagated to g w hich turns g 
from 0 to 1 and r from 1 to 0. When up_f equals to 0 
or rounding toward zero ( rd_zero) is active, no 
rounding is needed and the two bits shi fted in keep 
the value of r and s. The round ing mode is 
summarized in Table 1 and 2, and the circuit of 
ROUND_FAR block is sh own in Fig. 5(a). In Table 
1, LSB is the least significant bit of S_f, MSB is the 
most significant bit of S_f, sMSB is the bit right next 
to MSB, C is the carry  out of FAR path— cout_f, 
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Fig. 3 The logics of the second stage of the proposed single-mode quadruple precision floating-point adder 
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SP1 is SP1_f, SP2 is SP2_f. The ro unded result is 
left shifted twice depending on t he value of MSB 
and sMSB, through MUX7 and MUX8. The reason 
why frac_f1 need left shifting at m ost two bits i s 
explained previously in case (B) of step 2).   

The EXP_ADJ_FAR block is a sim ple common 
adder to inc rement or decre ment exp_large. The 
functionality of ADDEND block is to de termine the 
addend which is added  to exp_large. When both 
MSB and sMSB are 0 and eff_op is 1, the addend is 
assigned to 111111111111110 (- 2); when MSB is 0 
and sMSB is 1 and eff_op is 1, the addend is 
assigned to 111111111111111 (- 1); when MSB is 1 
and eff_op is 1, the  addend is assigned to 
000000000000000; when cout_f is 1 and  eff_op is 0, 
the addend is assigned to 00 0000000000001 (+1); 
when cout_f is 0, MSB is 1 and eff_op is 0, the  
addend is assigned to 000000000000000. The 

circuit of ADDEND block is shown in Fig. 5(d). If  
the adjusted exponent exp_f_tmp is the maximum 
value (111111111111111), exp_inf turns into 1, 
overflow occurs. 

The sign, exponent and f raction of th e result is 
selected through MUX10, MUX11 and MUX12 
according to path selection signal path_sel.  

The EXACT and EXCEPTION blocks are used to  
detect exceptions. When the bits rounded off is 0, 
the result is e xact as shown in Fig. 5(b). When one 
of the i nput operand is a NaN ( except=10), the 
result is invalid. When the result is infinit y 
(except=01) or the exponent reaches i ts maximum 
value (exp_inf=1), overflow occurs. When no 
overflow, underflow or invalid occurs, inexact turns 
into the com plement of exact_tmp. The circuit of 
EXCEPTIONS block is shown in Fig.  5(c). Since 
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res_is_nan and res_is_inf are mutually exclusive 
and except={res_is_nan,res_is_inf}, except could 
not be 11. 

The final exponent  and fraction are selected 
through MXU13 and MUX14 in Fig. 4. 
 
 

3 Triple-Mode Quadruple Precision 
Floating-Point Adder 
In this section, a  triple-mode quadruple precision 
floating-point adder is designed  with the 
architecture of the improved two-path algorithm.  
 
 
3.1 Stage 1 
Pipeline stage 1 is shown in Fig. 6. For clarity the  
rounding mode (rm), and precision mode (op_mode) 
signals are not drawn in Fig. 6. 

In Fig. 6, S1, S2, S3, S4, S5, S6, S7, S8 are all 32-
bit floating-point numbers. When op_mode equals 
to 0, the adder operates in quadruple precision mode, 
Q1 consists of S1, S2, S3 and S4, and Q2 consists of 
S5, S6, S7 and S8 as illustrated in Fig. 6. Whe n 
op_mode equals to 1, the adder operates in double  
precision mode, D1 consists of S1, S2, D2 consists 
of S3, S4, D3 consists of S5, S6, and D4 consists of 
S7, S8. D1, D2, D3 and D4 are all 64-bit floating-
point numbers. In other ca ses, the adder operates in 
single precision m ode (op_mode equals to 2 or 3).  
The combination of vario us precision m odes and 
operations is listed in Table 3.  

The signs, exponents and fractions of each 
operands in various precision modes is shown in Fig. 
6. For example, the sign of Q1 is the MSB of S1; the 
exponent of Q1 is s1[30:16], denoted as exp_q1; the 
fraction of Q1 is { S1[15:0], S2[31:0], S3[31:0], 
S4[31:0]}, denoted as frac_q1.In this paper, without 

Table 1. The rounding mode with effective subtraction operation 

R 

C=1 C=0 
rd_near up_f zero rd_near up_f zero

LSB=0 LSB=1 1 0 -- LSB=0 LSB=1 1 0 -- 

grs 

000 

C,S 

C,SP1(sLSB=1) 
C,S(sLSB=0) 

C,SP2(LSB=1)
C,S(LSB=0) 

C,S C,S

S 

S 

S S 

001 

C,SP1 C,SP2 SP1 

010 
011 
100 S SP1 

101 
SP1 110 

111 

 

Table 2. The rounding mode with effective addition operation 

R 

rd_near 
up_f 

zero 
1 0 

MSB=1 MSB=0
sMSB=1

MSB=0
sMSB=0 MSB=1 MSB=0

sMSB=1
MSB=0 
sMSB=0 -- -- 

grs 

000 

SP1,00 
SP1,00 

SP1,00

SP1,00

SP1,00

SP1,00 
SP1,00 SP1,00

111 S,11 S,11 

110 S,11 S,11 S,11 S,11 

101 S,10 S,10 S,10 S,10 S,10 

100 SP1,00(LSB=1) S,10 S,10 S,10 S,10 S,10 S,10 

011 S,10(*) S,10(*) S,10(*) S,10(*) S,10(*) S,01 S,01 

010 S,01 S,01 S,01 S,01 S,01 S,01 S,01 

001 S,00 S,00 S,00 S,00 S,00 S,00 S,00 
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special specification, “{}” means string 
concatenation.  

The EXP_DIFF block is used to com pute the 
exponent differences of operands and obtain the  
larger exponents in vari ous precision m odes. It 
consists of four FPPA1s as illustrated in Fig. 7(a) . 
exp_d1 is extended to {0000, exp_d1} and exp_d3 is 
extended to {0000, exp_d3}. exp_s1 is extended to 
{0000000, exp_s1} and exp_s5 is extended to 

{0000000, exp_s5}. In a s imilar way, exponents of 
the second pair of singl e precision operands are 
extended to 11 bits by placing three 0s in their high 
order bits. MUX1, MUX2, MUX3 and MUX4 are 
used to select the correct exponents  based on the  
corresponding operation mode. The Exp_Diffj 
(j=1,2,3,4) is similar to the one used in single-mode 
adder previously described, and produces the 
exponent difference signal edi (i=1,2,3,4) and t he 
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swap signal swap[i] (i=1,2,3,4). The larger exponent 
eli (i=1,2,3,4) is m ultiplexed through the 
multiplexor under each FPPA1.  
   The exponent difference edi (i=1,2,3,4) of each 
pair of operands are m odified to appropriate bit 
width and t he reason is explained in  Section 2.1. 
The EXP_DIFF_ADJ is consist of four exponen t 

difference adjust logics shown in Fig. 2(a). The 
SIGN_LOGIC, PATH_LOGIC, EFF_OP_LOGIC 
blocks are respectively consist of four SIGN_FARs, 
four PATH_GENs and four XOR gates illustrated in 
Fig. 2(b) and (c).  
  The HIDDEN_BITS block in Fig. 6 is used t o 
determine the hidden leadin g bit for each mantissa 
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Fig. 6.  The first pipeline stage of the triple-mode quadruple precision floating-point adder. 
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in different precision modes. The circuit of t his 
block is sho wn in Fig.  7(b). The m echanism is 

described in section 2.  
The functionality of MANT_SWAP in Fig. 6 is t o 

swap the mantissas of e ach pair of operands in 
different precision m odes. This unit is easily 
implemented by an am ount of multiplexors. When 
swap[i] (i=1,2,3,4) equals to 0, the second m antissa 
of each pair of operands is sele cted. The circuit of  
MANT_SWAP block is shown in Fig. 7(c). The data 
structure of the swapped mantissas frac_large and 
frac_small are shown in Fig. 8. The be nefit of this 
structure is that the carry out bit from the addition of 
lower order bits will not  be propagated to hi gher 
order bits, because of the zeros between ea ch 
mantissas.  

The NaN&INF block is sim ilar to the one 

Table 3. Combination of various precision modes and 
operations 

 quadruple double single 

op[1] 
0 Q1+Q2 D1+D3 S1+S5 

1 Q1-Q2 D1-D3 S1-S5 

op[2] 
0 -- D2+D4 S2+S6 

1 -- D2-D4 S2-S6 

op[3] 
0 -- -- S3+S7 

1 -- -- S3-S7 
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0 -- -- S4+S8 

1 -- -- S4-S8 
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described in single- mode adder. It pr oduces four 
exception signals for each pre cision mode: 
except[i]={res_is_nan[i],res_is_inf[i]}  (i=1,2,3,4).  
  The MANT_SHIFT_MUX block in Fig. 6 is used to 
right shift the mantissas by one or zero bit in various 
precision modes for CLOSE path. This bloc k 
consists of seven MS blocks shown in Fig. 9. T he 
techniques of MS block is si milar to the one 
described in Section 2, and redrawn in the right 
lower corner in Fig. 9 a nd W is the bit width of  
mantissa. The data structure of the  shifted mantissa 
frac1 and frac2 is shown in Fig. 8.  

  In Fig. 6, for CLOSE pat h, the shifted mantissa 

frac1 and frac2 are passed to MANT_ADD&LZD 
block. The functionality of this block is to compute 
the difference and leading zero number of each pair 
of mantissas in various precision modes. The 
implementation of MANT_ADD&LZD block is 
shown in Fig. 10(a). The ADDER_CLOSE block is a 
113-bit FPPA1 and used to compute the difference 
of mantissas in CLSOE path. The  flag signal  
generating SP1_c and carry out signals are slightly 
different from the one u sed in single-m ode adder, 
which depends on the precision mode as following: 
quadruple:   

flag1[0]=1, flag1[i]=A[i-1]^B[i-1]flag1[i-1]; 
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Fig. 8.  The data structure of mantissa for various operation modes 
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cout_c[1]=Cout (Cout is the carry out of A+B) 
double:         

flag1[0]=1,flag1[56]=1, 
flag1[i]=A[i-1]^B[i-1]flag1[i-1] (i≠0,56) 
cout_c[1]=S_c[109], cout_c[2]=S_c[53] 

single:      
flag1[0]=1, flag1[28]=1, flag1[56]=1, flag1[84]=1, 
flag1[i]=A[i-1]^B[i-1]flag1[i-1] (i≠0,28,56,84) 
cout_c[1]=S_c[107], cout_c[2]=S_c[80], 
cout_c[3]=S_c[52],   cout_c[4]=S_c[24]  

The sum ܵ_ܿ ൌ 1ܿܽݎ݂ ൅ ܿ_2തതതതതതതത,  ܵܲ1ܿܽݎ݂ ൌ ܵ_ܿ^݂݈ܽ݃1.  
As described in Section 2, the LZA_LZC_NEG is 

used to obtain the correct number of leading zeros in 
case of that frac1 is sm aller than frac2 in various 
precision modes. In Fig. 10(a), when the first single  
precision result is negative ( cout_c[1] equals to 0), 
ns1 of LZA_LZC_NEG is selected through  MUX1 
and MUX5; when the second double precision result 
is positive ( cout_c[2] equals to 1), nd2 of 
LZA_LZC_POS is sele cted through MUX3 and 
MUX6; when the quadruple precision result is  
positive, nq of LZA_LZC_POS is selected through 
MUX2 and MUX5. The signals norm_numi 
(i=1,2,3,4) are the leading zero num bers detected 
and used in the normalization in stage2 in various 
precision modes. 

To support three operating m odes, the 
LZA_LZC_POS(NEG) logic in Fig.  10(a) is slightly 

different from the one described in Se ction 2. The  
details of LZA, LZC and LZD logic are described in 
[23, 21], so here we only give the m odification of 
these logics. Fig. 10(b) shows the implementation of 
LZA-LZC used in  our designs. As sh own in Fig. 
10(b), the 1 13-bit LZA u nit consists of four LZAs 
and three 1- bit multiplexers. MUX1, MUX2 and 
MUX3 are used to connect the four LZAs as a single 
113-bit LZA in quadruple  precision mode, and the  
outputs of four LZAs are concatenated and extended 
with 15 trailing zeros In double precision mode, the 
LZA29 is connected to the first LZA28 by MUX1 to 
anticipate the num ber of leading zeros of the first 
53-bit mantissa, the second and t hird LZA28 
together with MUX3 are used for the second 53-bi t 
mantissa. The low order 25 bits of lza1 (lza[24:0]) 
and lza2 are concatenate d and extended with 11 
trailing zeros,  and the same as lza3 and lza4 . In 
single precision m ode, each LZA block is used to 
anticipate the num ber of leading zeros of its  
corresponding mantissa. The low order 24 bits of 
lzai (i=1,2,3,4) , lzai[23:0], is extended with 8 
trailing zeros. Each LZC32 unit produces a 5-bit 
number from its corresponding l eading zero 
anticipating string, two LZC32s plus one LZD Logic 
unit constitutes a 64-bit LZC unit and produces a 6-
bit number. Finally two 64-bit LZC unit  constitute a 
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128-bit LZC unit and produces a 7-bit number. As 
shown in Fig. 10(b), nq represents the l eading zero 
number in q uadruple precision mode in the third  
pipeline stage, nd1 and nd2 in double precision 
mode, and ns1, ns2, ns3, ns4 in single precision 
mode.  

In FAR path, the block ALIGN in Fig. 6 is used to 
complete the alignment task in various precision 
modes. To s upport single, double and quadruple 
precision mode, the ALIGN block is different from a 
traditional barrel shifter. T he ALIGN block receives 

frac_small and the adj usted exponent differences 
shift1, shift2, shift3, shift4 as its inpu t operands and 
produces a s hifted 113-bit num ber frac_align and 
three 4-bit signals: g_far, r_far and s_far as shown 
in Fig. 6. The architecture  of the ALIGN block we  
proposed is illustrated in Fig. 11. If the operation is 
quadruple precision mode (op_mode equals to 0), 
the first column of multiplexers   (MUX1 to MUX19) 
is used to right shift  the high order 57 bits of q, the 
second column of multiplexers (MUX5 to MUX20) 
is used to right shift the low order 56 bits of q, and 
the third column of multiplexers (MUX6 to MUX21) 
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Fig. 11.  The ALIGN block supports single, double and quadruple mode 
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plus MUX3 are used to concatenate the low and high 
order bits. I n double precision mode (op_mode 
equals to 1), 0 is passed t o q2 through MUX2 and 
MUX3, then the first column and the second column 
of multiplexers works independentl y to right shift 
two 53-bits numbers. In single pre cision mode 
(op_mode equals to 2 or 3), shift3 is m ultiplexed 
through MUX22 and shift4 is multiplexed through 
MUX23, and the fourth single mantissa is passed to 
d7 through MUX2, MUX3 and MUX6. The first 
single precision m antissa is contained in the hig h 
order 29 bits  of d1 and t he third sing le precision 
mantissa is contained in the high order 28 bits of d6. 
The first, second and t hird column of multiplexers 
works independently to accomplish the right shifting 
of the first, third and fourth single precision 
mantissa. Since there a re only three colum ns of 
multiplexers, we use another tradit ional barrel 
shifter with the width of 24 bits t o right shift t he 
second single precision mantissa as illustrated in Fig. 
11. The l ogics of produc ing guard, rounding and 
sticky bits fo r various operating m odes are simple 
and not drawn in Fig. 11 for simplicity. 
 
 
3.2 Stage 2 

The architecture of stage 2 is shown in Fig. 12. In 
pipeline stage 2, the aligned mantissa s frac_align 
and frac_large in FAR path are add ed/subtracted 
through ADDER_FAR block. Also th e guard ( g), 
round (r) and sticky (s) bits of mantissa re sult are 
determined in this  stage. GRSi and RMi (i=1,2,3,4) 
blocks are similar to the GRS_LOGIC block in Fig. 
2(d) and the RM_DEC block i n Fig. 2(e). RMi 
blocks are u sed to obtain the rounding enabling 
signal rd_near, up_f and up_c.  

In FAR pat h, if the e ffective operation is  
subtraction (eff_op[i]=1), each part of frac_align is 
complemented through the XORi (i=1,2,3,4,5,6,7) 
gate and m ultiplexed through MUX1 in various 
precision modes, and t hen added t o frac_large 
through ADDER_FAR block. The ADDER_FAR 
block is a FPPA2 but slightly different from the one 
described previous in Section 2. The  flag signal  
flag1 generating SP1_f and carry out signals cout_f 
are similar to that described in Stage 1 in this  
Section. The flag signal flag2 generating SP2_f is as 
following:  
quadruple:  

 flag2[0]=0, flag2[1]=1, 
 flag2[i]=P[i-1]^G[i-2]flag2[i-1] (i>1); 

double:    
flag2[0]=0, flag2[1]=1, 

flag2[56]=0, flag2[57]=1, 
flag2[i]=P[i-1]^G[i-2]flag2[i-1] (i≠0,1,56,57);  

single:      
flag2[0]=0, flag2[1]=1, 
flag2[28]=0, flag2[29]=1, 
flag2[56]=0, flag2[57]=1, 
flag2[84]=0, flag2[85]=1, 
flag2[i]=P[i-1]^G[i-2]flag2[i-1]  

(i≠0,1,28,29,56,57,84,85); 
S_f=frac_large+frac_tmp, SP1_f=S_f^flag1, 

SP2_f=S_f^flag2.  
The mantissa results S_c and SP1_c of CLOSE 

path in St age1 are rounded  through R_Ci 
(i=1,2,3,4,5,6,7) blocks and m ultiplexed through 
MUX2, then normalized through t he 
NORMALIZATION block. The R_Ci logic is 
identical to the roundi ng logic in Fi g. 2(f). The  
NORMALIZATION block is similar to the ALIGN 
block we described in Fig. 11 except that its shifting 
direction is l eft. In Fig. 12, the m ultiplexors from 
MUX3 to MUX9 are used to correct th e LZA error. 
The mechanism of LZA error correction in various  
precision modes is exa ctly the same a s that 
described in single- mode adder. Then according to 
precision mode, the results and MSBs are extended 
and multiplexed through MUX10 and MUX11. 
 
 
3.3 Stage 3 
The third pipeline stage of the  triple-mode 
quadruple precision floating-point adder is shown in 
Fig. 13 and Fig. 14. In stage 3, the computing results 
of mantissas of FAR path is rounded, the exponents 
of both FAR and CLOSE path are adjusted, and the  
exceptions are detected.  

In Fig. 13, R_F1 block is used to  round the 
mantissas result of quadruple precision o perands, 
MUX1 and MUX8 are used to left shift the rounded  
result by at most 2 bits. R_F2, MUX3, MUX10 and 
R_F3, MUX4 and MUX11 are used  for double  
precision mode. Similarly, from R_F4 to R_F7, and 
MUX4 to MUX14 are for single precision mode. The 
implementation of each rounding logic R_Fi 
(i=1,2,3,4,5,6,7) is totally identical to the logic in 
Fig. 5(a). T he details of roundi ng mechanism is 
presented in Section 2. The seven rounded m antissa 
results are extended and m ultiplexed through 
MUX15 according to precision m ode. The 113-bit 
signal frac_f in Fig. 13 is the final mantissa 
computing result of FAR path. The inp ut signals of 
R_Fi block are shown at the top of Fig. 13.  

The four EXACTi (i=1,2,3,4) blocks and f our 
EXCEPTIONi blocks are identical to the ones in Fig. 
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5(b)(c) and used to produc e the invalid, inexact and 
overflow signals. The details of mechanism is 
described in Section 2 stage 3. The signal expj_inf 
(j=1,2,3,4) is generated in the process of adjusting 
exponents of FAR path shown in Fig. 14.  

In Fig. 1 4, like the method used in sin gle-mode 
adder, four groups of exponents adjusting logic 
(ADDENDi, ADDERi) are used to  adjust the 
exponents of FAR path. The seven AND gates ar e 
used to detect whether all the bits of the adjusted 
exponents are 1 in vario us precision m odes. If all 
the bits of th e adjusted exponents are 1, overflo w 
occurs and the signal expj_inf (j=1,2,3,4) turns into 
1. For example, in double precision mode, if exp1_f 
is xxxx11111111111, exp1_inf is asserted through 

MUX20. The ADDENDi block is  completely 
identical to the one in Fig. 5(d). 

For CLOSE path in Fig.  14, four FPPA1s are 
used to subtract norm_numi from expi_large 
(i=1,2,3,4) to obtain the adjusted ex ponents. The 
seven OR gates are used to detect whether the 
mantissa result is zero or not. F or example in 
quadruple mode, when frac_c is not 0 and 
exp1_cout is 0 which means the adjusted exponen t 
is less than o r equal to 0, since our design does not 
support subnormal number, underflow occurs 
(uf1=1) and 15{0} is passed to exp1_c as the  
exponent of CLOSE path. MUX22 and MUX23 are 
used to select the right  underflow signals in various 
precision modes. 
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Fig. 12.  The second pipeline stage of the triple-mode quadruple precision floating-point adder. 
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According to the path selection signal path_sel, 
the correct exponents are selected through MUX28 
(29,30,31), and the corre ct mantissas are sel ected 
through MUX32 (33,34,35) in various precision 
modes. Then the exponents and mantissas are 
multiplexed through MUX36 (37,38,39,40,41,42,43). 
These eight multiplexors are used  to process 

exceptions. For example in double precision mode, 
except[1]=except[2]:  

if except[1]={res_is_nan[1],res_is_inf[1]}=01, 
then 15{1} is passed to exp1, 29{0} is passed to 
frac1 and 28{0} is passed  to frac2. This means the 
computing result of the first pair of dou ble precision 
operands (D1 and D3) is an infinity. At last, the  
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final 128-bit result is multiplexed through MUX42 
according to the precision mode. 
 
 
4 Synthesis Results 
To make a complete comparison, the triple-m ode 
quadruple, dual-mode quadruple, single-mode 
quadruple, double and s ingle precision floatin g-
point adders are implemented in Verilog-HDL using 
our proposed architecture. All the adders are in two 
forms: combinational and pipelined with three 
stages. Our proposed designs are validated by  
functional verification, performing a simulation with 
40000 random normal vectors plus corner/exception 
vectors. The vectors combination in three precision 

modes are presented in Table 4. A, B are two input 
floating point numbers, normal in Table 4 denotes a 
random normal nu mber, INF denotes infinit y and 
equal is also a random norm al number but 
indicating A=B. Because subnorm al number is not 
supported, the test vector has no subnormal number 
in Table 4. The EDA tools we used  is Synops ys 
VCS-2014.03. To evalua te the designs, all the 
designs in com binational and pipelin e form are 
entirely synthesized using S ynopsys Design 
Compiler 2013.12-SP5.  

For we m ostly concern a bout performance, so 
the logic s ynthesis criteria is in terms of dela y. In 
synthesis process, we applied Synops ys’s 
Topographic technique, which can obt ain the best 
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correspondence between sy nthesis and placement 
route results.  Table 5 shows the delay , Table 6  
shows the area and Table 7 shows the power of all 
the adders w e implemented. In all the three tables, 
PIPE means the design is in pipeline for m, COMB 
denotes the design is in  combinational form and 
PIPE(RR) means that the design in pipeline for m is 
synthesized with Register Repositioning technique. 
The delay, area and power are also compared to the 
results that presented in [27]  and [31]. The delay is 
represented in nanosecond and FO4, and the area is  
represented in square micrometer and the number of 
gates. The logic s ynthesis library we used is TSMC 
65 nm CMOS standard cell library. The are a of the 
minimum inverter gate in our used library is 1.44 
μm2, and the delay of FO4 is roughly 0.0325 ns. The 
decimal number in parentheses in each row of Table 
5 is the period of constraining clock.   

In Table 5, f or pure combinational cir cuits, the 
triple-mode adder has roughly 10% more delay (2.0 
ns VS 1.81 ns), compared to single-mode quadruple 
precision adder. Since t here is no  triple-mode 
floating-point adder in pr evious literature, we use  
dual-mode adder im plemented with t he proposed 
architecture to compare performance with previous 
research work. The delay in FO4 of our proposed 
dual-mode adder is 58, just 67%  of the delay  (87) 
presented in [31 ]. With pipeline form , the delay of 
stage 1, stage 2 and stage 3 is 1.09ns , 1.06ns and 
1.08ns respectively for  triple-mode adder, and  
0.92ns, 0.91ns, 0.92ns for dual-mode quadruple 

precision adder. The triple-m ode adder in pipeline  
form has roughly 22% more delay than single-mode 
quadruple precision adder, and the  quadruple 
precision dual-mode adder has 13% more delay. The 
worst delay of our pro posed dual-mode adder is 
29.2 in FO4 compared to 31.8 presented in [27]. The 
dual-mode adder presented in [27 ] has no exception 
processing circuit. Taking int o this account, our 
proposed architecture is better than that of [27 ]. 
Compared to the total latency 113.6(28.4*4) in FO4 
presented in [31], the dual-mode adder we designed 
has a faster speed which is 87.6 (29.2*3) in FO4. 
The total latency  of the triple-mode adder we 
designed is 101.4 (3 3.8*3) is also smaller than that 
in [31]. Besides that, our  proposed dual-mode and 
triple-mode adder is 128  bits, and th e dual-mode 
adder of [ 31] is 64 bits. By  applying register 
repositioning technique, o ur designed single-mode, 
dual-mode and triple-m ode quadruple precision 
adder can run at 125 0MHz, 1176MHz and 
1075MHz respectively (clock period is 0 .8ns, 
0.85ns and 0.93ns respectively).  

In Table 6, t he area of our designed quadruple 
precision triple-mode adder in com binational and 
pipeline form is 66916 an d 71290 μm2 respectively. 
After register repositioning, the area  changes to 
85013 μm2. The gate num ber of our designe d 
quadruple precision triple-mode adder in  
combinational and pipeli ne form is 4646 9 and 
49507 respectively. From Table 6, we c an conclude 
that the area of higher precision adder is rou ghly 

Table 4. Testing vector patterns including exceptions and corners 
operand exception and corners, 100 random vectors for normal number in each case 40000 random vectors 

A NaN NaN INF INF NaN normal INF normal 0 equal normal 

B NaN INF NaN INF normal NaN normal INF 0 equal normal 

Table 5. Latency of the proposed designs 

LATENNCY Single Double Quad Quad 
(Dual-Mode)

Quad 
(Tri-Mode) 

[27]Quad 
(Dual-Mode) 

(0.11μm) 

[31]Double 
(Dual-Mode)

(0.18μm) 

COMB 
(ns) 1.34(74%) 1.54(85%) 1.81(100%) 1.90(105%) 2.00(110%) -- 7.84 

FO4 41 47 55 58 62 -- 87 

PIPE 

1 0.66(0.67) 0.78(0.8) .0.89(0.9) 0.92(0.95) 1.09(1.10) 0.74 -- 

2 0.50(0.67) 0.62(0.8) 0.71(0.9) 0.91(0.95) 1.06(1.10) 1.19 -- 

3 0.65(0.67) 0.74(0.8) 0.84(0.9) 0.92(0.95) 1.08(1.10) 1.59 -- 

worst 
(ns) 0.66(74%) 0.78(88%) 0.89(100%) 0.92(113%) 1.09(122%) 1.59 2.56(2.56*4) 

FO4 20.6 24.6 27.7 29.2 33.8 31.8 28.4(4 stages)

PIPE 
(RR) 

1,2,3 0.58(0.6) 0.69(0.7) 0.78(0.8) 0.83(0.85) 0.90(0.93) -- -- 

worst 
(ns) 0.58(75%) 0.69(88%) 0.78(100%) 0.83(106%) 0.90(116%) -- -- 

FO4 17.8 21.5 24.0 26.2 28.6 -- -- 
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two times o f that of lower precisio n adder. For 
example, when the circuit is pure combinational, the 
area of 32-bi t adder is 10 639μm2 while the area of 
64-bit adder is 2188 5μm2; when t he circuit is 
pipelined, the area of 64-bit adder i s 24243μm2 
while the area of 128-bit adder is 50268μm2. Since 
the dual-mode adder presented in [31] is 64 bits, the 
number of g ates is approximately  estimated to be  
2*10794 when extended to 128 bits. The gate 
number of dual-m ode adder we designed is 44 323 
which is greater than 2*1079 4. So t he two-path 
algorithm is not suitable  for area-efficient design. 
The gate count  of our proposed dual-mode 
quadruple precision adder is onl y 51.1% of that in 
[27], which proves that the proposed architecture is 
more area-efficient than [27 ]. Compared to a  
combination of four sin gle precision, two dou ble 
precision and one quadr uple precision adder, the 
area saving of the pr oposed triple-mode adder is 
47.4%, 52.6% and 52.3% in combinational, pipeline 
and register repositioning form respectively.  The 
area saving is com puted using t he following 
equation:  

100% - [(4*S+2*D+Q)-T]/(4*S+2*D+Q)*100%, 
S, D, Q and T are the  area of single- mode single, 
double, quadruple precision and triple-mode adder.  
    The power of the triple-m ode adder in  
combinational circuit is 9.93mW, as shown in Table 
7. For pipelining and register repositioning circuit , 
the power of the triple-mode adder is 32.86mW and 
42.08mW. As seen in T able 7, the registers of 
pipelined and register-repositioning circuits  
consumes 21.13mW and 29.36mV respectively. The 
aggressive rising in power is mainly contributed by 
registers which dissipate much internal power even  
when clock is deactivated.  
 
 
5 Conclusion 
This paper presents an architecture of improved 
two-path algorithm for floating-po int adders. By 
using flagged parallel prefix adder (FPPA) to  
replace comparator and com pound adder, the  
rounding process is si mplified and delay is 
decreased. Using two ways of sim ple LZA-LZC in 
[21, 23] instead of exact LZA [ 39-40] not on ly 

Table 6. Area estimation of the proposed designs 

AREA Single Double Quad 
Quad 

(Dual-Mode)
Quad 

(Tri-Mode) 

[27]Quad 
(Dual-Mode) 

(0.11μm) 

[31]Double 
(Dual-Mode) 

(0.18μm) 

CO
MB 

Area(μm2) 10639 21885 40936 55628 66916 -- 164000*2 

Gate Count 7388 15198 28428 38631 46469 -- 10288*2 

PIPE 

 Area(μm2) 12921 24243 50268 63528 71290 357399 172000*2 

Gate Count 8793 16835 34908 44323 49507 86663#=
ଵଶସ଻ଽସ

ଵ.ସସ
 10794*2 

PIPE 
(RR) 

Area(μm2) 14618 29284 61293 68895 85013 -- -- 

Gate Count 10151 20336 42565 47844 59037 -- -- 

The data with a “#” is computed using scaled area: Area(65nm)=Area(110nm)*(65/110)2=357399*(65/110)2=124794 

Table 7. Power estimation of the proposed designs 

POWER Single Double Quad 
Quad 

(Dual-Mode) 
Quad 

(Tri-Mode) 

[27]Quad 
(Dual-Mode) 

(0.11μm) 

[31]Double 
(Dual-Mode) 

(0.18μm) 

CO
MB 

combinational 2.53 4.22 7.12 8.64 9.93 -- -- 

registers 0 0 0 0 0 -- -- 

total 2.53 4.22 7.12 8.64 9.93 -- 9.76 

PIPE 

combinational 3.29 5.19 8.72 10.88 11.73 -- -- 

registers 7.59 12.46 22.16 22.09 21.13 -- -- 

total 10.88 17.64 30.88 32.97 32.86 -- 48.38 

PIPE 
(RR) 

combinational 3.3126 5.07 10.68 11.48 12.72 -- -- 

registers 9.7653 20.17 28.57 30.56 29.36 -- -- 

total 13.08 25.24 39.25 42.03 42.08 -- -- 
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decreases the latency but also keep the area in a 
reasonable range. 

Also this paper shows how to modify the 
proposed architecture to support m ultiple precision 
addition/subtraction. The proposed  triple-mode 
quadruple precision floating-point adder can  
perform four parallel single precision or two parallel 
double precision or a quadruple precision 
addition/subtraction. To support m ultiple precision, 
we designed a triple-m ode normalization logic, a  
triple-mode alignment logic and a triple-mode FPPA. 
We also m odified the m ain components of our 
proposed architecture including leading-zero 
detection logics. The triple-mode normalization and 
alignment logic require a very  small increase in  
delay and a relatively reasonable increase in area 
compared to single-mode adder. On the other hand, 
the extra multiplexors introduced to support tri ple-
mode operations result in a slightly increase in delay 
and area.  

The synthesis results sh ow that the proposed 
triple-mode quadruple precision adder requires 10-
16% more delay than the single-mode quadruple 
precision adder. The pro posed triple-mode adder 
saves 47-52% area and is very useful f or SIMD and 
scientific applications. To the author’s  knowledge, 
this is the first triple-mode floating-point adder.  
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