
Triple-mode floating-point adder architectures

LIU DE, WANG MINGJIANG
School of Electronic and Information Engineering

Harbin Institute of Technology Shenzhen Graduate School
Xili University Town, Shenzhen, Guangdong

CHINA
liude19832006@126.com http://www.hitsz.edu.cn

Abstract: - This paper presents an architecture of a triple -mode floating-point adder that supports higher
precision and parallel lower precision addition. The proposed design can work in three modes: four parallel
single precision or two parallel double precision or one quadruple precision addition/subtraction. The proposed
triple-mode adder’s parallel co mputation in low er precision can be ap plied in SIMD applicat ion to
accommodate 3D graphics, video conferencing and multim edia fields while its high precision computation can
be applied in scientific applications such as supernov a simulations, climate modeling and etc. To im prove the
performance of the triple-mode floating-point adder, the design is implemented with the i mproved two-path
algorithm in co mbinational and pipeline form . To compare area, power and worst-ca se latency, single-mode
single, double, quadruple and dual-mode quadruple precision floating-point adders are also implemented using
the similar techniques. These adders and the triple- mode adder are tested and verified through extensive
simulation and then synthesized with 65nm manufacture process. The synthesis results show that the proposed
triple-mode floating-point adder requires 10-16% more delay than a single-mode quadruple precision adder and
saves 47-52% area compared to the combination of four single, two double and one quadruple precision adders.

Key-Words: - floating-point adder, floating-point arithmetic, triple-mode adder

1 Introduction
Floating-point arithmetic is a key part of CPU, GPU
and DSP chi ps for its fre edom from overflow and
underflow and ease of using to programmers. Today
many general purpose processors offe r hardware
video decoding, image processing and 3D
functionality by executing SIMD instructions such
as Intel’s AVX, SSE3 and SSE4 [1,2]. Most of these
SIMD instructions are floating-point arithmetic
related and directly executed through two or m ore
parallel single precision floating-poi nt units (FPU).
For image processing and 3D video ga me, a large
number of single precision floating- point operations
are executed through many parallel FPUs in graphic
chips [3]. NVIDIA’s GTX680 with Kep ler
architecture has 1536 cores in a single die and
AMD’s HD7970 with GCN architecture has 2048
cores and each core comprises 5 FPUs [4]. Besides
the traditional applications of SIMD, [4] uses SIMD
instructions of GPU to accelerate encryption; [5]
uses GPU and SIMD instruction of CPU to
accelerate Viterbi decoding in wireless
communication; parallel SIMDs are even used in
bioinformatics [6]. Juan M. Cebrian [7] pointes out
in his resea rch work that power ef ficiency of
parallel FPUs is higher than that of multi-core and .

Single-precision FPU is useful for SIMD, but low
precision makes it not able to s upport some
scientific applications. Although higher precision
arithmetic can be implemented by sof tware, it is
reported that hardware im plementation of a
quadruple precision FPU is approximately 200 times
faster than that of softwar e implementation [8]. For
scientific applications, h igher precision fl oating-
point computation is needed, which is another trend.
D.H.Bailey [9] and G. H owell [10] describes th e
necessity that higher precision arithmetic is useful
for a variet y of situatio ns including ill-conditioned
linear systems, large scale si mulation etc. Although
64-bit IEEE [11] arithmetic is sufficient for those
situations [10], supernova simulation and clim ate
modeling still need higher precision su ch as 128-bit
floating-point arithmetic. E.Schwarz [12] presents in
their paper that quadr uple precision (1 28-bit)
floating-point unit can be im plemented in a
reasonable amount of hardware co mpared to double
precision.

In the past decade, the soft ware and hardware has
gradually transformed from 32-bit to 6 4-bit. Today,
from personal devices such as PC, mobile phone to
enterprise workstation, from software t o hardware,
64-bit has be come very universal, so making FPU
supporting 64-bit is also necessary.

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 39 Volume 9, 2018

Since the most frequent operation--f loating-point
addition, takes 55% of all five basi c arithmetic
operations specified by IEEE754-2008 [11], much
research and many papers have proposed efficient
floating-point addition algorithms and architectures
[14-25].

Currently, most floating-point addition
(subtraction) units in modern m icroprocessor are
implemented in two-path algorithm [14-15]. With
the same manufacturing technology, adder
implemented with the tw o-path algorithm is faster
but consumes more area and power, c ompared to
single-path algorithm. As the feature size of CMOS
transistor continually shrinks, the transistor beco me
faster and less power consum ing, so th e advantage
of single-path algorithm in area and power over
two-path algorithm is no more important.

As described above, to support SIMD, scientific
and 64-bit applications, designing a triple-mode
quadruple precision floating-point adder for general
purpose processor is necessary.

Several literatures present dual-m ode floating-
point unit including adde r, multiplier, divider and
multiply-add fused (MAF). A. Akkas presents a
dual-mode precision floating- point adder in [26-27],
a dual-mode floating-point multiplier in [28-29] and
a dual-mode floating-point divider in [30]. [31]
presentes a dual-mode double precision floating-
point adder with single-path algorithm. [32] presents
a 80-bits m ultiplier which can perform one 80-bit
multiplication in 5 cycles, or one 64-bit
multiplication in 4 cy cles or two p arallel 32-bit
multiplications in 2 c ycles. Ray C.C. Cheung [33]
designed a dual-m ode divider p erforms one
double/two single precision division. K.
Manolopoulos [34] presents a triple-mode multiplier
that can perform single, double and quadruple
precision multiplication. Baluni [35] presents a fully
pipelined dual-mode floating-point multiplier. Libo
Huang [36] and K. Manolopoul os [37] respectively
presents a dual- mode floating point MAF unit that
can perform one double precision multiply-add (MA)
operation or two single precision MAs. [38] presents
a multi-functional MAF that can perform one
double precision MA, or two single precision dot
products.

In this paper, we present a single- mode and a
triple-mode quadruple precision floating-point adder.
Our proposed designs support all f our rounding
modes and exceptions specified by IEEE754-2008,
but does not support sub-normal number.

Section 2 describes the proposed delay -efficient
architecture of a single-m ode quadruple precision
adder implemented with two-path al gorithm. The
architecture is described in pipeline for m and the

specific details of circuit i mplementation of each
component is also presented. The synthesized
results of its corresponding combinational circuit is
presented in Section 4.

In Section 3 , we design a triple-m ode quadruple
precision adder by modifying the architecture of the
single-mode adder in Section 2. For comparison, we
also implemented single-mode single, do uble and
dual-mode quadruple precision adders using the
similar techniques. All the adders with both
combinational and pipeline for ms are implemented
in Verilog-HDL, and verified throug h extensive
simulations.

In Section 4, the s ynthesized results of single-
mode single, dou ble, quadruple, dual-mode
quadruple and triple-mode quadruple precision
floating-point adders are presented and compared.

2 Single-Mode Quadruple Precision
Floating-Point Adder
The proposed design has three pipeline s tages and is
described in section 2.1, 2.2 and 2.3 for each stage
respectively.

2.1 Stage 1
Fig.1 shows the first stage of the propos ed pipelined
architecture of the quad ruple precision floating-
point adder. D1 and D2 are the two operands, op is
the initial operation and t he 2-bit signal rm is the
rounding control signal. The rounding modes are as
following: rm=0, round to nearest even; rm=1,
round to positive infinit y; rm=2, round to negative
infinity; rm=3, round to zero.

The functionality of the fi rst stage is to com pare
exponents of D1 and D2, swap mantissas of D1 and
D2, determine the sign of the result and the effective
operation eff_op in FAR path, and compute the
mantissa difference in CLOSE path. When eff_op
equals to 1, the effective operation is subtraction.

In FAR path, the EXP_DIFF block in this stage
produces two signals: swap and exp_diff which is
the absolute value of the difference of exp1 and
exp2. OR1 and OR2 blocks are two OR gates to
generate the hidden leading bit of m antissas. If the
exponent equals to zero, the hidden leading bit
hd_bit1 (or hd_bit2) is 0, otherwise is 1. The
EXP_DIFF block is im plemented using a flagged
parallel prefix adder (FPPA1) which can co mpute
|A-B|. The EXP_DIFF block does no t contain a
comparator. The details of a FPPA1 is shown in [20].
When swap equals to 0, exp1 is less tha n exp2, the

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 40 Volume 9, 2018

greater mantissa {hd_bit2, frac2} is selected
through MUX1 to obtain frac_large; the smaller
mantissa {hd_bit1,frac1} is selected through MUX2
to obtain frac_small. When swap equals to 1, the
opposite operation occurs as illustrated in Fig.1. The
greater exponent is multiplexed through EXP_MUX.
The exp_diff is a 15-bit num ber and adjusted to 7
bits through EXP_DIFF_ADJ block. The circuit o f
EXP_DIFF_ADJ block is shown in Fig. 2(a). If the
high order bits exp_diff[14:7] is not 0, which means
exp_diff is greater than 127, then align_num is 127,
otherwise align_num is exp_diff[6:0]. In the process
of alignment, frac_small can be right shifted at most
116 bits, so 7 bits is sufficient to h old a number that
is greater than or equal to 116. Anot her objective of

adjusting the exponent diff erence is to decrease the
delay of ALIGN block. The ALIGN block
accomplishes the task of right shifting frac_small by
the align_num bits. The alignm ent shift block
ALIGN is generally implemented using a barrel
shifter which is com posed of seve ral levels of
multiplexers. When the width of the shifting number
is 15 bits, the delay of a barrel shifter is 15 times the
delay of a multiplexer and the area is 15 tim es the
area of one level of m ultiplexers. That is why we
need to adjust the 15-bit exp_diff to 7-bits
align_num. The SIGN_FAR block is used to produce
the sign signal sign_f of FAR path and its circuit is
shown in Fi g. 2(b). T he Nan&Inf_DETECT block
receives eff_op, exponents and mantissas of the two

D1 D2

126‐‐‐‐‐‐‐‐‐112 126‐‐‐‐‐‐‐‐‐112111‐‐0 111‐‐‐0

exp1 15 frac2 112
frac1 112 1sign2

EXP_DIFF

(|exp1 – exp2|, FPPA1)

0 1 0 1 0 1

15exp_large 113frac_large 113frac_small

swapEXP_MUX MUX2MUX1

1sign1

exp2 15

op

113 113 113 113

exp2 15

exp1 15

swap

1eff_op

0 1 0 1

MUX3 MUX4

1

0 10 1
1

frac1
[1
1
1]

e
xp
2
[0
]

e
xp
1
[0
]

frac2
[1
1
1]

frac2
[1
1
1]

e
xp
2
[0
]

e
xp
1
[0
]

frac1
[1
1
1]

frac1[111:1] frac2[111:1]

frac1[111:0] frac2[111:0]

EXP_DIFF_ADJ

1swap 15

ALIGN

LZA_POS LZA_NEG

ADDER_CLOSE
(FPPA1)LZC_POS LZC_neg

1 0

113lza_pos 113lza_neg

7 7norm_neg

7norm_num

113 113

SING_FAR

fign_f 1

op

sign1 sign2

swap

7

PATH_GEN

e
ff_

o
p

sw
ap

exp_diff

align_num

align
_
n
u
m

frac2
[1
1
1]

frac1
[1
1
1]

MUX5

norm_pos

eff_op sign_f

1 1

exp_large

15

frac_
large

113

113

frac_align g_f r_f s_f

1 1 1

except

1

path_sel

2 113 1131

cout_c S_c SP1_cnorm_num

2

rm

2

rm

1
1

ena1
ena2

1 1

sign_c g_c

OR1 OR2

11hd_bit1 hd_bit2

NaN
&Inf
_DE
TEC
T

hd_bit1,hd_bit2,eff_op,frac1,frac2

mant2mant1

A B

Fig. 1 The logics of the first stage of the proposed single-mode quadruple precision floating-point adder

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 41 Volume 9, 2018

operands to determine whether the result is infi nity
or a NaN. To share logic , the hd_bit1 and hd_bit2
are passed to this block. When D1 and D2 are both
infinity and the effective operation is subtraction
(eff_op=1), the result is a NaN (res_is_nan=1);
when one of the two operands is NaN, the result is a
NaN(res_is_nan=1); when one opera nd is infinit y
and the othe r is a normal num ber, the result is
infinity (res_is_inf=1). To make the Figure clear, we
use a 2-bit signal except ={res_is_nan, res_is_inf}
to represent exceptions as illustrated in Fig. 1.

In CLOSE path:
1) When exp1=exp2, exp1[0] definitely equals

to exp2[0], then ena1 and ena2 is 0, both
mantissas {1,frac1} and { 1,frac2} remain
unchanged through MUX3 and MUX4.

2) When {frac1[111], frac2[111]} is 01 and
exp1≠exp2, ena2 is 1, ena1 is 0, {1,frac1}
remains unchanged through MUX3, {1,frac2}

is right shifted by one bit through MUX4, the
difference S_c(or SP1_c) of the two
mantissas has more than two leading zeros:
(A) if exp1-exp2=1, S_c is the right result, so
path_sel turns into 1; (B) if exp1-exp2=-1,
the right result should be s elected from FAR
path, path_sel turns into 0; in this case,
frac_large={1,frac2}, frac_small={1,frac1},
after aligning frac_small, the difference of
frac_large and frac_align has at most two
leading zeros.

3) If {frac1[111], frac2[111]} is 10, the
mechanism is just the opposite in step 2).

The PATH_GEN block is shown in Fig. 2(c).
When the exponents difference align_num is 0 o r 1
and eff_op is 1 and { swap, frac1[111],frac2[111]}
is 101 or 010, path_sel is 1. The reason is explained
in step 1), 2) and 3) above.

OR

1 0

e
xp
_
d
iff[6

:0
]

e
xp
_
d
iff[1

4
:7
]

7{1}

7

7

exp_diff

7

align_num

1 0

1

1 1 1 1

sign1 op sign2 swap

sign_f

AND

OR

OR

swap

AND

MSB2 MSB1 swap MSB1 MSB2 align_num[6:1]

1 1 1 1 11 61

align_num[0]

AND

1 1

1

eff_op

1

path_sel

g_f r_f s_f

0 1

1

g

r_f s_f

0 1

1

r

1

s

swap

eff_op

align_num frac1[111] frac2[111]

MSB1 MSB2

(a) EXP_DIFF_ADJ (b) SIGN_FAR

(d) GRS_LOGIC

(c) PATH_GENrm[0] rm[1] sign_f sign_c

rd_near up_f up_c

1 1 1

1 12

rm sign_csign_f

1 0

1113

1

113 113

SP1_c S_c up_ccout_c g_c

1

1

1 1 1113 113

114

frac_round_c

S_c[0]

S_c[112]

 (e) RM_DEC (f) ROUND_CLOSE

8

15

Fig. 2. The circuit of components in the first stage

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 42 Volume 9, 2018

In our proposed design, we used two-way leading
zero detection (LZD) to count the number of leading
zeros. The LZD func tionality is implemented
through a le ading zero a nticipating (LZA) and a
leading zero counting (L ZC) logic. To obtain the
difference of two m antissas, a 113-bit flagge d
parallel prefix adder (FPPA1) is used. As illustrated
in Fig.1, the shifted and inverted m antissa mant2
and mant1 are passed to LZA_POS and
ADDER_CLOSE blocks, and the shifted an d
inverted mantissa mant1 and mant2 are passed to
LZA_NEG block. In the case that mant1 is less than
mant2, the leading zero num ber norm_pos detected
by LZA_POS and LZC_POS is false, but norm_neg
is true. In the later situation, the signal cout_c is 0,
so the correct leading zero num ber norm_num can
always be obtained through MUX5. The LZC
circuits are d escribed in detail in [22, 24-25] and
[21], but we choose [21]’s method for LZC logic
since it is easier to be m odified to implement multi-
mode leading zero detection. We choose [23]’s
method for LZA logic since it is faster and less area
consuming compared to [22, 24- 25]. If using one-
way LZA-LZC, in the case of exp_diff equaling to 0,
we have to use a 113-bit comparator to compare the
two mantissas before LZA, which would introduce a
large amount of delay and area. The correct leading
zero number of our used method is always one less
than or equal to the exact result. To correct the LZA
error, the mantissas diffe rence after normalization
needs to be left shifted by one or zero bit. Paper [39]
proposed LZA circuit which can obtain the exact
leading zero num ber and need no LZA error
correction, but have 25% more delay and 67% more
area than its parallel add er in 128-bit . Paper [40]
proposed a LZA error correcting circuit tha t
consume less power an d area, but the delay
increases as the bit width grows. The logic level of
LZA error correcting circuit in [40] is 3log2n+8,
which is far greater than the logic level of the adder
tree (log2n+2) in CLOSE path. Paper [25] proposed
a faster LZA correction circuit, but its area is about
two times of one LZD (LZA+LZC). S o the area o f
LZD in [25] exceeds the area of two-way LZD.
Compared to [25, 39-40], our proposed two-way
LZD can obtain the best trade- off in delay and area.

The ADDER_CLOSE block is implemented using
a FPPA1 which co mputes A+ (A-B-1), A+ +1(A-
B), and B-A. The detail of a FPPA1 is shown in [20].
When cout_c is 1, the output sum S_c of CLOSE
path is A+ and the SP1_c equals to
S_c+1(A+ +1); when cout_c is 0, S_c is equal to

SP1_c (B-A). A and B are the two inputs of FPPA1.

2.2 Stage 2
The functionality of the second stage is to compute
the sum/difference of mantiss as of FAR path,
generate the guard, round and sticky bit of FAR path,
round and normalize the difference of mantissas of
CLSOE path. Fig. 3 sh ows the details of the second
stage.

The ADDER_FAR block is used to co mpute the
sum/difference. When the effe ctive operation is
addition and the rounding mode is rounding toward
to positive or negative infinity, A+B+2 also need to
be computed [18]. We designed a new flagged
parallel prefix adder (FPPA2) that is different to the
one presented in [20]. Our designed FPPA2 can
compute A+B, A+B+1, A+B+2, A+ , A+ +1,
A+ +2 and B-A. For two operands A={an-

1,..,a2,a1,a0} and B={bn-1,..,b2,b1,b0}, the flag signal
flag2={fn-1,..,f2,f1,f0} for obtaining A+B+2 is
produced from the two signals G={gn-1,..,g2,g1,g0}
and P={pn-1,..,p2,p1,p0}: gi=aibi, pi=ai^bi (i=0,1,2…);
f0=0, f1=1, f2=p1^g0, fi=(pi-1^gi-2)fi-1 (i>2). Suppose
the sum of A and B is S (S=A+B), then S+2 can be
obtained using the following formula: S+2=S^flag2
(si^fi). The “” means AND operation and “^” means
XOR operation. The flag signal flag1 for obtaining
A+B+1 is the sa me as described in [20] and
S+1=S^flag1. To the author ’s knowledge, the
FPPA2 is t he first time designed and used in
floating-point adder. The literature [14-18, 26-27,
31] all used a co mpound adder to im plement S+2.
Compared to compound adder, our designed FPPA2
saves the extra row of half-adders, which in turn
decreases the delay of the critical path. The S, S+1
and S+2 of FAR path is denoted as S_f, SP1_f and
SP2_f in Fig. 3.

The GRS_LOGIC block is used to generate the
guard, round and sticky bit of the final result and its
circuit is shown in Fig. 2(d). The RM_DEC block is
used to decode the rounding mode. When rm equals
to 0, the signal rd_near indicating round toward
nearest even is activated; when rounding m ode is
round toward positive i nfinity (rm=1) and the sign
is positive (sign_c=0 or sign_f=0), or round toward
negative infinity (rm=2) and the si gn is negative
(sign_c=1 or sign_f=1), the signal up_f indicating
rounding toward infinity is activated. The circuit of
RM_DEC is shown in Fig. 2(e).

Since the result S+1(SP1_c) and the result S (S_c)
of CLOSE p ath has been com puted, the roun ding

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 43 Volume 9, 2018

process is executed through ROUDN_CLOSE block
before normalization. [18] presente s the rounding
mode. The rounded result is a 114-bit signal an d
denoted as frac_round_c. The circuit of
ROUDN_CLOSE block is shown in Fig. 2(f). Since
the mantissa of CLOSE path is right s hifted by one
or zero bit through MUX3 and MUX4, the round and
sticky bit is 0, the guard bit is just the LSB of
mantissa {1,frac1} ({1,frac2}) or 0. g_c is the guard
bit and is not drawn in stage1 for clarity.

The NORMALIZATION block is used to
normalize the rounded re sult of CLOSE path and
implemented with a traditional barrel shifter. As
mentioned earlier, the normalized re sult need an
extra 1 bit left shifting to c orrect the LZA error. As
illustrated in Fig. 3, if t he MSB of frac_norm—
MSB_c is 0, frac_norm is left shifted by one bit
through MUX6, otherwise the mantissa remains
unchanged.

2.3 Stage 3
In the third stage, the exponents of b oth paths are
adjusted, the mantissa su m of FAR path is rounded
and exception is determ ined. Fig . 4 shows the
details of the third stage.

The rounding of m antissa sum of FAR path is

completed through the ROUND_FAR block. As we
stated in stage1 step 2), when the effective operation
is subtraction and the tw o high bits of the rounded
result is 00, the rounded result need to be left shifted
by two bits. This leads to a different roundin g mode
compared to general rounding m ode [18] in FAR
path. For example, When grs=011, no carry can be
propagated to the LSB of S_f because g equals to 0,
the high order bits is selected as S. In this situation,
if MSB=1, the result S_f needs no left s hifting, there
is no carr y propagated to LSB of S; if MSB=0,
sMSB=1, the result S_f needs left shifting by one bit,
after left shifting, g become the new least significant
bit of the result, and cause rs=11, there is a carry
propagated to g which turns g from 0 to 1; if MSB=0,
sMSB=0, the result S needs left shifting by two bi ts,
g and r are shifted into the result, and cause s=1 and
r=1, there is a carry propagated to g w hich turns g
from 0 to 1 and r from 1 to 0. When up_f equals to 0
or rounding toward zero (rd_zero) is active, no
rounding is needed and the two bits shi fted in keep
the value of r and s. The round ing mode is
summarized in Table 1 and 2, and the circuit of
ROUND_FAR block is sh own in Fig. 5(a). In Table
1, LSB is the least significant bit of S_f, MSB is the
most significant bit of S_f, sMSB is the bit right next
to MSB, C is the carry out of FAR path— cout_f,

eff_op sign_f exp_largefrac_align g_f r_f s_f except path_sel cout_c S_c SP1_cnorm_numrm sign_c g_c

ADDER_FAR
(FPPA2)

XOR

113{eff_op}

113 113

113113

ROUND_CLOSE

NORMALIZATION

114

7

frac_round_c

0 1
MUX6

113 113

frac_norm

frac_
n
o
rm

[1
1
2]

{frac_norm[111:0],0}

GRS_LOGIC

eff_op

RM_DEC

sign_f

1 1 1 1 1 1 2 1 7 113 1
11 1113 113 113

eff_op sign_f cout_f S_f SP1_f SP2_f g r s except

p
ath

_
se
l

rd_near sign_cup_f norm_num frac_close MSB_c

15

113

1 21

g_c

1

up_c

S_c[112]

BA

frac_large

Fig. 3 The logics of the second stage of the proposed single-mode quadruple precision floating-point adder

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 44 Volume 9, 2018

SP1 is SP1_f, SP2 is SP2_f. The ro unded result is
left shifted twice depending on t he value of MSB
and sMSB, through MUX7 and MUX8. The reason
why frac_f1 need left shifting at m ost two bits i s
explained previously in case (B) of step 2).

The EXP_ADJ_FAR block is a sim ple common
adder to inc rement or decre ment exp_large. The
functionality of ADDEND block is to de termine the
addend which is added to exp_large. When both
MSB and sMSB are 0 and eff_op is 1, the addend is
assigned to 111111111111110 (- 2); when MSB is 0
and sMSB is 1 and eff_op is 1, the addend is
assigned to 111111111111111 (- 1); when MSB is 1
and eff_op is 1, the addend is assigned to
000000000000000; when cout_f is 1 and eff_op is 0,
the addend is assigned to 00 0000000000001 (+1);
when cout_f is 0, MSB is 1 and eff_op is 0, the
addend is assigned to 000000000000000. The

circuit of ADDEND block is shown in Fig. 5(d). If
the adjusted exponent exp_f_tmp is the maximum
value (111111111111111), exp_inf turns into 1,
overflow occurs.

The sign, exponent and f raction of th e result is
selected through MUX10, MUX11 and MUX12
according to path selection signal path_sel.

The EXACT and EXCEPTION blocks are used to
detect exceptions. When the bits rounded off is 0,
the result is e xact as shown in Fig. 5(b). When one
of the i nput operand is a NaN (except=10), the
result is invalid. When the result is infinit y
(except=01) or the exponent reaches i ts maximum
value (exp_inf=1), overflow occurs. When no
overflow, underflow or invalid occurs, inexact turns
into the com plement of exact_tmp. The circuit of
EXCEPTIONS block is shown in Fig. 5(c). Since

eff_op sign_f cout_f S_f SP1_f SP2_f g r s except rd_nearup_f norm_num frac_close MSB_c

EXP_ADJ_CLOSE
(exp_large‐norm_num,

FPPA1)

EXP_ADJ_FAR
(exp_large+addend, ADDER)

ADDEND 15

eff_op

15

exp_large

cout_f

S_f[112]

15

7

1

S_f[111]

ROUND_FAR

EXACT

eff_op

cout_f

S_f[0]

path_sel

g r s

0 1
MUX7

0 1
MUX8

115

115

frac_f1

frac_f2

1

1

frac_f1[114]

frac_f2[114]

frac_f1[113:0],0

frac_f2[113:0],0

11111111
OR

113

15

exp_c_tmp

1

0 1
MUX9

15{0}

1515

exp_cout

1

AND

15exp_f_tmp

1

1

exp_zero

exp_inf

0 1
MUX11

0 1
MUX12

15112 112

frac_far[113:2]

frac_c[111:0] exp_close

0 1
MUX10 path_selpath_sel

sign_f sign_c

overflow

2 1 0
MUX13

2 1 0
MUX14

112{1} 112{0}
112

15{1} 15

EXCEPTION

1exact_tmp

2

invalid inexact underflow

15112

1

sign_result frac_result exp_result

except

frac_
ze
ro

1

1

1

addend

15

S_f[112]
S_f[111]

1
1

1

g_c
S_c[112]

Fig. 4 The logics of the third stage of the proposed single-mode quadruple precision floating-point adder

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 45 Volume 9, 2018

res_is_nan and res_is_inf are mutually exclusive
and except={res_is_nan,res_is_inf}, except could
not be 11.

The final exponent and fraction are selected
through MXU13 and MUX14 in Fig. 4.

3 Triple-Mode Quadruple Precision
Floating-Point Adder
In this section, a triple-mode quadruple precision
floating-point adder is designed with the
architecture of the improved two-path algorithm.

3.1 Stage 1
Pipeline stage 1 is shown in Fig. 6. For clarity the
rounding mode (rm), and precision mode (op_mode)
signals are not drawn in Fig. 6.

In Fig. 6, S1, S2, S3, S4, S5, S6, S7, S8 are all 32-
bit floating-point numbers. When op_mode equals
to 0, the adder operates in quadruple precision mode,
Q1 consists of S1, S2, S3 and S4, and Q2 consists of
S5, S6, S7 and S8 as illustrated in Fig. 6. Whe n
op_mode equals to 1, the adder operates in double
precision mode, D1 consists of S1, S2, D2 consists
of S3, S4, D3 consists of S5, S6, and D4 consists of
S7, S8. D1, D2, D3 and D4 are all 64-bit floating-
point numbers. In other ca ses, the adder operates in
single precision m ode (op_mode equals to 2 or 3).
The combination of vario us precision m odes and
operations is listed in Table 3.

The signs, exponents and fractions of each
operands in various precision modes is shown in Fig.
6. For example, the sign of Q1 is the MSB of S1; the
exponent of Q1 is s1[30:16], denoted as exp_q1; the
fraction of Q1 is { S1[15:0], S2[31:0], S3[31:0],
S4[31:0]}, denoted as frac_q1.In this paper, without

Table 1. The rounding mode with effective subtraction operation

R

C=1 C=0
rd_near up_f zero rd_near up_f zero

LSB=0 LSB=1 1 0 -- LSB=0 LSB=1 1 0 --

grs

000

C,S

C,SP1(sLSB=1)
C,S(sLSB=0)

C,SP2(LSB=1)
C,S(LSB=0)

C,S C,S

S

S

S S

001

C,SP1 C,SP2 SP1

010
011
100 S SP1

101
SP1 110

111

Table 2. The rounding mode with effective addition operation

R

rd_near
up_f

zero
1 0

MSB=1 MSB=0
sMSB=1

MSB=0
sMSB=0 MSB=1 MSB=0

sMSB=1
MSB=0
sMSB=0 -- --

grs

000

SP1,00
SP1,00

SP1,00

SP1,00

SP1,00

SP1,00
SP1,00 SP1,00

111 S,11 S,11

110 S,11 S,11 S,11 S,11

101 S,10 S,10 S,10 S,10 S,10

100 SP1,00(LSB=1) S,10 S,10 S,10 S,10 S,10 S,10

011 S,10(*) S,10(*) S,10(*) S,10(*) S,10(*) S,01 S,01

010 S,01 S,01 S,01 S,01 S,01 S,01 S,01

001 S,00 S,00 S,00 S,00 S,00 S,00 S,00

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 46 Volume 9, 2018

special specification, “{}” means string
concatenation.

The EXP_DIFF block is used to com pute the
exponent differences of operands and obtain the
larger exponents in vari ous precision m odes. It
consists of four FPPA1s as illustrated in Fig. 7(a) .
exp_d1 is extended to {0000, exp_d1} and exp_d3 is
extended to {0000, exp_d3}. exp_s1 is extended to
{0000000, exp_s1} and exp_s5 is extended to

{0000000, exp_s5}. In a s imilar way, exponents of
the second pair of singl e precision operands are
extended to 11 bits by placing three 0s in their high
order bits. MUX1, MUX2, MUX3 and MUX4 are
used to select the correct exponents based on the
corresponding operation mode. The Exp_Diffj
(j=1,2,3,4) is similar to the one used in single-mode
adder previously described, and produces the
exponent difference signal edi (i=1,2,3,4) and t he

OR

ANDAND AND AND

OR

AND AND AND

OR

OR

OR OR

AND
AND

OR

AND

OR

OR

AND

MUX1
1 0

SP1,00

115 115

S,bt_sf_in

MUX2
1 0

cout_f,SP2,0

115 115

cout_f,S,0

MUX3
1 0

cout_f,SP1,0

115

MUX4
1 0

115 115

115

frac_f1

e
ff_

o
p

1

1

1

sel_sp1_sub

sel_sp2_add

sel_sp1_add

sel_sp1_sub_near sel_sp1_sub_inf1 1 sel_sp1_add_near0 1 1 1

sel_sp1_add_near1

sel_sp1_add_inf

11
1

11111111

~
g ~
r

~
s r s

LSB

g

M
S
B

~
M
S
B

su
b
M
SBr

g su
b
M
SB

M
S
Bg r s g r s

u
p
_
f

u
p
_
f

M
S
B

su
b
M
SB

~
M
S
B

u
p
_
f g

r^
s g r s

su
b
LSB

co
u
t_
f

rd
_
n
e
ar

LSB r s

LSB

rd
_
n
e
ar g

~
co
u
t_
f g r s

~
co
u
t_
f

u
p
_
f g r s

LSB

u
p
_
f

co
u
t_
f

MSB=S_f[112]; subMSB=S_f[111]; LSB=S_f[0]; subLSB=S_f[1];

g r s up_f rd_near cout_f S_f SP1_f SP2_f eff_op

1 1 1 1 1 1 113 113 113 1

OR OR OR

AND

e
ff_

o
p

co
u
t_
f

S_
f[0

] sg r

p
ath

_
se
l

res_
is_

n
an

S_
f[1

1
2]

S_
f[1

1
1]

AND

g_
c

AND

OR

exact_tmp

OR

1 110

0 1

11111

1 0
MUX5 MUX6

1

1 1

AND

1

1 1

res_
is_

in
f

e
xp
_
in
f

u
n
d
e
rflo

w

e
xa
ct_

tm
p

invalid overflow inexact

except={res_is_nan,
 res_is_inf}

except exp_inf underflow exact_tmp

M
S
B
_
c

OR

AND AND

OR

1 1 1

1 1

1

1 11

14{ } 1

15

addend

eff_op cout_fS_f[112] S_f[111]

(b) EXACT (c) EXCEPTION (d) ADDEND

(a) ROUDN_FAR

Fig. 5. The circuits of components in the third stage

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 47 Volume 9, 2018

swap signal swap[i] (i=1,2,3,4). The larger exponent
eli (i=1,2,3,4) is m ultiplexed through the
multiplexor under each FPPA1.
 The exponent difference edi (i=1,2,3,4) of each
pair of operands are m odified to appropriate bit
width and t he reason is explained in Section 2.1.
The EXP_DIFF_ADJ is consist of four exponen t

difference adjust logics shown in Fig. 2(a). The
SIGN_LOGIC, PATH_LOGIC, EFF_OP_LOGIC
blocks are respectively consist of four SIGN_FARs,
four PATH_GENs and four XOR gates illustrated in
Fig. 2(b) and (c).
 The HIDDEN_BITS block in Fig. 6 is used t o
determine the hidden leadin g bit for each mantissa

S5 S6

31 3130‐‐‐23 30‐‐‐2322‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐0 22‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐0

63 62‐‐‐‐‐‐‐‐‐‐‐‐52 51‐‐0

S7 S8

31 3130‐‐‐23 30‐‐‐2322‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐0 22‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐0

63 62‐‐‐‐‐‐‐‐‐‐‐‐52 51‐‐0

S1 S2

31 3130‐‐23 30‐‐‐2322‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐0 22‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐0

63 62‐‐‐‐‐‐‐‐‐‐‐‐52 51‐‐0

S3 S4

31 3130‐‐23 31‐‐‐2322‐‐‐‐‐‐‐‐‐‐‐‐‐‐0 22‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐0

63 62‐‐‐‐‐‐‐‐‐‐‐‐52 51‐‐‐0

127

126‐‐‐‐‐‐‐‐‐‐112

126‐‐‐‐‐‐‐‐112

127 111 0

111 0

exp_s5

exp_s1

exp_s6 exp_s7 exp_s8

exp_s2 exp_s3 exp_s4

frac_s5 frac_s6 frac_s7 frac_s8

frac_s4frac_s3frac_s2frac_s1

exp_d3

exp_d1

exp_d4

exp_d2

frac_d3 frac_d4

frac_d1 frac_d2

exp_q2

exp_q1

frac_q2

frac_q1

HIDDEN_BITS

EFF_OP_LOGIC

EXP_DIFF

EXP_DIFF_ADJ

MANT_SHIFT_MUX

MANT_SWAP

ALIGN MANT_ADD&LZD

NaN&INF

PATH_LOGIC

SIGN_LOGIC

path_sel

24

sign_f

4

eff_op

4 4 4

g_far r_far s_farfrac_large frac_align

113 113 7 6 5 5 4 113 113

norm_num2 norm_num4 S_c SP1_c

n
o
rm

_
n
u
m
1

n
o
rm

_
n
u
m
3

co
u
t_
c

4

g_c

113

swap

7 6 5

5

sh
ift1

sh
ift2

sh
ift3

sh
ift4

4

q

fq1
fq2

113

fd1
fd3

fd2
fd4

fs1
fs5

fs2
fs6

fs3
fs7

fs4
fs8

53

53
24

24

24

24

ed1 ed3ed2 ed4

15 8 811

out g_far r_far s_far

113

113frac1

frac2

sig
n
1

sig
n
2

sig
n
3

sig
n
4

sig
n
5

sig
n
6

sig
n
7

sig
n
8

op

4

4

swap

sig
n1

sig
n2

sig
n3

sig
n4

sig
n5

sig
n6

sig
n8

sig
n8

op

128 128

Q1 Q2

2 2 2 2 2 2 2

e
xp
_
q
1

e
xp
_
q
2

e
xp
_
d
1

e
xp
_
d
2

e
xp
_
d
3

e
xp
_
d
4

e
xp
_
s1

e
xp
_
s2

e
xp
_
s3

e
xp
_
s4

e
xp
_
s5

e
xp
_
s6

e
xp
_
s7

e
xp
_
s8

e
xp
_
q
1

e
xp
_
q
2

e
xp
_
d
1

e
xp
_
d
2

e
xp
_
d
3

e
xp
_
d
4

e
xp
_
s1

e
xp
_
s2

e
xp
_
s3

e
xp
_
s4

e
xp
_
s5

e
xp
_
s6

e
xp
_
s7

e
xp
_
s8

sign1
sign2

sign3
sign4

sign5
sign6

sign7 sign8

frac1 frac2

el1,
el2,
el3,
el4

15
11

8
8 4

llm
m
q
1
2

llm
m
d
1
3

llm
m
d
2
4

llm
m
s1
5

llm
m
s2
6

llm
m
s3
7

llm
m
s4
8

llmmq12={exp_q1[0],exp_q2[0]}; Q1={S1,S2,S3,S4}; Q2 = {S5,S6,S7,S8};
llmmd13={exp_d1[0],exp_d3[0]}; llmmd24={exp_d2[0],exp_d4[0]};
llmms15={exp_s1[0],exp_s5[0]}; llmms26={exp_s2[0],exp_s6[0]};
llmms37={exp_s3[0],exp_s7[0]}; llmms48={exp_s4[0],exp_s8[0]};

52

23

23
23

23
23
23
23
23

52
52
52
112
112 frac_q1

frac_q2
frac_d1
frac_d2
frac_d3
frac_d4

frac_s1

frac_s2
frac_s3
frac_s4
frac_s5
frac_s6
frac_s7
frac_s8

52

23

23
23

23
23
23
23
23

52
52
52
112
112frac_q1

frac_q2
frac_d1
frac_d2
frac_d3
frac_d4

frac_s1

frac_s2
frac_s3
frac_s4
frac_s5
frac_s6
frac_s7
frac_s8

frac_small

4 4 5 7 7
5

7
6

shift1,
shift2,
shift3,
shift4

5

sw
ap op

M
S
B
1

M
S
B
2

MSB1={frac_q1[111], frac_d1[51], frac_d2[51],
 frac_s1[23], frac_s2[23], frac_s3[23], frac_s4[23]};
MSB2={frac_q2[111], frac_d3[51], frac_d4[51],
 frac_s5[23], frac_s6[23], frac_s7[23], frac_s8[23]};

except

2
2

2

Fig. 6. The first pipeline stage of the triple-mode quadruple precision floating-point adder.

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 48 Volume 9, 2018

in different precision modes. The circuit of t his
block is sho wn in Fig. 7(b). The m echanism is

described in section 2.
The functionality of MANT_SWAP in Fig. 6 is t o

swap the mantissas of e ach pair of operands in
different precision m odes. This unit is easily
implemented by an am ount of multiplexors. When
swap[i] (i=1,2,3,4) equals to 0, the second m antissa
of each pair of operands is sele cted. The circuit of
MANT_SWAP block is shown in Fig. 7(c). The data
structure of the swapped mantissas frac_large and
frac_small are shown in Fig. 8. The be nefit of this
structure is that the carry out bit from the addition of
lower order bits will not be propagated to hi gher
order bits, because of the zeros between ea ch
mantissas.

The NaN&INF block is sim ilar to the one

Table 3. Combination of various precision modes and
operations

 quadruple double single

op[1]
0 Q1+Q2 D1+D3 S1+S5

1 Q1-Q2 D1-D3 S1-S5

op[2]
0 -- D2+D4 S2+S6

1 -- D2-D4 S2-S6

op[3]
0 -- -- S3+S7

1 -- -- S3-S7

op[4]
0 -- -- S4+S8

1 -- -- S4-S8

0 1 2,3 1 2,30 1 2,3 1 2,3
MUX1 MUX2 MUX3 MUX4

Exp_Diff1
(|exp1‐exp2|,

FPPA1)

Exp_Diff2
(|exp1‐exp2|,

FPPA1)

op_mode

Exp_Diff3
(|exp1‐exp2|,

FPPA1)

Exp_Diff_4
(|exp1‐exp2|,

FPPA1)

el2

0000 0000 00000000000000 000 000

1

ed1

8 8 8 8

15

111 18 18

swap[2]ed2 swap[3]ed3 swap[4]ed4

exp_s3 exp_s7 exp_s4 exp_s8

op_mode op_mode

15 15 11 11

exp_q2exp_q1 exp_d2 exp_d4exp_d1 exp_d3 exp_s2 exp_s6exp_s5exp_s1

15 15 15 15 15 15 11 11 11 11
OR OR OR OR OR OR OR OR

8 8 8 8 8 8 8 8

exp_s1 exp_s2 exp_s3 exp_s4 exp_s5 exp_s6 exp_s7 exp_s8

OR OR OR OR

1 1 1 1

3 3 3 3

exp_d1[10:8] exp_d2[10:8] exp_d3[10:8] exp_d4[10:8]

OR OR

1 1

44

exp_q1[14:11] exp_q2[14:11]

1 1 1 1 1 11 1 1 1 111

hbs1 hbd1 hbs2 hbq1 hbs3 hbd2 hbs4

h
b
s5 hbd3

h
b
s6 hbq2 hbs7 hbd4 hbs8

fq1={hbq1,frac_q1}; fq2={hbq2,frac_q2};
fd1={hbd1,frac_d1}; fd2={hbd2,frac_d2}; fd3={hbd3,frac_d3}; fd4={hbd4,frac_d4};
fs1={hbs1,frac_s1}; fs2={hbs2,frac_s2}; fs3={hbs3,frac_s3}; fs4={hbs4,frac_s4};
fs5={hbs5,frac_s5}; fs6={hbs6,frac_s6}; fs7={hbs7,frac_s7}; fs8={hbs8,frac_s8};

1 2 3 4 5 6 7 8 9 10 11 12 13 14

29 29 29 29 28 28 28 28 28 28 28 28 28 28 28 28 57 57 57 57 56 56 56 56 113 113 113 113

5{0},fs1

5{0},fs5

5{0},fs5

5{0},fs1

4{0},fs2

4{0},fs6

4{0},fs6

4{0},fs2

4{0},fs3

4{0},fs7

4{0},fs7

4{0},fs3

4{0},fs4

4{0},fs8

4{0},fs8

4{0},fs4

4{0},fd
1

4{0},fd
3

4{0},fd
3

4{0},fd
1

3{0},fd
2

3{0},fd
4

3{0},fd
4

3{0},fd
2

fq
1

fq
2

fq
2

fq
1

swap[1] swap[1] swap[2] swap[2] swap[3] swap[3] swap[4] swap[4] swap[1] swap[1] swap[2] swap[2] swap[1] swap[1]

2,3 1 0

15
2,3 1 0

16op_mode

113 113

frac_large frac_small

(a) EXP_DIFF (b) HIDDEN_BITS

(c) MANT_SWAP

1 2 3 4

swap[1]el1 el3 el4

11 8 8

15

Fig. 7. The circuits of EXP_DIFF, HIDDEN_BITS and MANT_SWAP

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 49 Volume 9, 2018

described in single- mode adder. It pr oduces four
exception signals for each pre cision mode:
except[i]={res_is_nan[i],res_is_inf[i]} (i=1,2,3,4).
 The MANT_SHIFT_MUX block in Fig. 6 is used to
right shift the mantissas by one or zero bit in various
precision modes for CLOSE path. This bloc k
consists of seven MS blocks shown in Fig. 9. T he
techniques of MS block is si milar to the one
described in Section 2, and redrawn in the right
lower corner in Fig. 9 a nd W is the bit width of
mantissa. The data structure of the shifted mantissa
frac1 and frac2 is shown in Fig. 8.

 In Fig. 6, for CLOSE pat h, the shifted mantissa

frac1 and frac2 are passed to MANT_ADD&LZD
block. The functionality of this block is to compute
the difference and leading zero number of each pair
of mantissas in various precision modes. The
implementation of MANT_ADD&LZD block is
shown in Fig. 10(a). The ADDER_CLOSE block is a
113-bit FPPA1 and used to compute the difference
of mantissas in CLSOE path. The flag signal
generating SP1_c and carry out signals are slightly
different from the one u sed in single-m ode adder,
which depends on the precision mode as following:
quadruple:

flag1[0]=1, flag1[i]=A[i-1]^B[i-1]flag1[i-1];

112

x

0000 x 000 x

00000 0000 0000 0000x x x x

quadruple fraction

double fractiondouble fraction

single fraction

0

single fraction single fraction single fraction

108 56 52 0

107 79 51 23 0

Fig. 8. The data structure of mantissa for various operation modes

0 10 1
ena1 ena2

1 1
011 101

W+1 W+1

fB fB
[W

‐1
:1
]W

W‐1

W+1

mA mB

MS_Q12

1 1
112 112

frac_
q
1

frac_
q
2

e
xp
_
q
1
[0
]

e
xp
_
q
2
[0
]

MS_D13

1 1
52 52

frac_
d
1

frac_
d
3

e
xp
_
d
1
[0
]

e
xp
_
d
3
[0
]

MS_D24

1 1
52 52

frac_
d
2

frac_
d
4

e
xp
_
d
2
[0
]

e
xp
_
d
4
[0
]

MS_S15

1 1
23 23

frac_
s1

frac_
s5

e
xp
_
s1
[0
]

e
xp
_
s5
[0
]

MS_S26

1 1
23 23

frac_
s2

frac_
s6

e
xp
_
s2
[0
]

e
xp
_
s6
[0
]

MS_S37

1 1
23 23

frac_
s3

frac_
s7

e
xp
_
s3
[0
]

e
xp
_
s7
[0
]

MS_S48

1 1
23 23

frac_
s4

frac_
s8

e
xp
_
s4
[0
]

e
xp
_
s8
[0
]

fA fBeA eB fA fBeA eB fA fBeA eB fA fBeA eB fA fBeA eB fA fBeA eB fA fBeA eB

mA mB mA mB mA mB mA mB mA mB mA mB mA mB

W+1

W+1 W+1

W‐1

W

fA fA
[W

‐1
:1
]

fA
[W

‐1
]

fA
[W

‐1
]

fB
[W

‐1
]

fB
[W

‐1
]

e
A
[0
]

e
B
[0
]

e
A
[0
]

e
B
[0
]

4{0} 3{0} 5{0} 4{0} 4{0} 4{0} 4{1} 3{1} 5{1} 4{1} 4{1} 4{1}

242424 24242424535353 53 24

0 1 2,3

MUX1
0 1 2,3

MUX2

113113

113 113 113 113

113 113

op_mode

frac2frac1

MS

Fig. 9. The circuit of MANT_SHIFT_MUX block

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 50 Volume 9, 2018

cout_c[1]=Cout (Cout is the carry out of A+B)
double:

flag1[0]=1,flag1[56]=1,
flag1[i]=A[i-1]^B[i-1]flag1[i-1] (i≠0,56)
cout_c[1]=S_c[109], cout_c[2]=S_c[53]

single:
flag1[0]=1, flag1[28]=1, flag1[56]=1, flag1[84]=1,
flag1[i]=A[i-1]^B[i-1]flag1[i-1] (i≠0,28,56,84)
cout_c[1]=S_c[107], cout_c[2]=S_c[80],
cout_c[3]=S_c[52], cout_c[4]=S_c[24]

The sum _ 1 2, 1_ _ ^ 1.
As described in Section 2, the LZA_LZC_NEG is

used to obtain the correct number of leading zeros in
case of that frac1 is sm aller than frac2 in various
precision modes. In Fig. 10(a), when the first single
precision result is negative (cout_c[1] equals to 0),
ns1 of LZA_LZC_NEG is selected through MUX1
and MUX5; when the second double precision result
is positive (cout_c[2] equals to 1), nd2 of
LZA_LZC_POS is sele cted through MUX3 and
MUX6; when the quadruple precision result is
positive, nq of LZA_LZC_POS is selected through
MUX2 and MUX5. The signals norm_numi
(i=1,2,3,4) are the leading zero num bers detected
and used in the normalization in stage2 in various
precision modes.

To support three operating m odes, the
LZA_LZC_POS(NEG) logic in Fig. 10(a) is slightly

different from the one described in Se ction 2. The
details of LZA, LZC and LZD logic are described in
[23, 21], so here we only give the m odification of
these logics. Fig. 10(b) shows the implementation of
LZA-LZC used in our designs. As sh own in Fig.
10(b), the 1 13-bit LZA u nit consists of four LZAs
and three 1- bit multiplexers. MUX1, MUX2 and
MUX3 are used to connect the four LZAs as a single
113-bit LZA in quadruple precision mode, and the
outputs of four LZAs are concatenated and extended
with 15 trailing zeros In double precision mode, the
LZA29 is connected to the first LZA28 by MUX1 to
anticipate the num ber of leading zeros of the first
53-bit mantissa, the second and t hird LZA28
together with MUX3 are used for the second 53-bi t
mantissa. The low order 25 bits of lza1 (lza[24:0])
and lza2 are concatenate d and extended with 11
trailing zeros, and the same as lza3 and lza4 . In
single precision m ode, each LZA block is used to
anticipate the num ber of leading zeros of its
corresponding mantissa. The low order 24 bits of
lzai (i=1,2,3,4) , lzai[23:0], is extended with 8
trailing zeros. Each LZC32 unit produces a 5-bit
number from its corresponding l eading zero
anticipating string, two LZC32s plus one LZD Logic
unit constitutes a 64-bit LZC unit and produces a 6-
bit number. Finally two 64-bit LZC unit constitute a

ADDER_CLOSE
(FPPA1)

LZA_LZC_POSLZA_LZC_NEG

A B A B

1 2,3
MUX3

0 1
MUX6

0 1
MUX7

0 1
MUX8

MUX1
0 1 2,3

MUX2
0 1 2,3

nq nd1 nd2 ns1 s2 ns3 ns4 nq nd1 nd2 ns1 s2 ns3 ns4

1 2,3
MUX4

0 1
MUX5

co
u
t_c[1

]

7 6 5 5

7 6 6 5 5 5 5 7 6 6 5 5 5 5

op_mode

7 7 6 6 5 5 5 5

cou
t_
c[2

]

co
u
t_c[3

]

nn
_1

n
p
_1

n
n
_2

np
_2 n

n
_
3

np
_
3

n
n
_
4

n
p
_4

4 113 113

S_c SP1_ccout_c

co
u
t_c[4

]

norm_num1 norm_num2 norm_num3 norm_num4

Inv Inv Inv

A B

113113

113 113
113113

113
113

frac2frac1

LZA29

0
,1 2

,3

M
U
X
1 LZA28

 0
 1,2

,3

M
U
X
2 LZA28

0
,1 2

,3

M
U
X
3 LZA28

1 1 1

1

15{0}

[24:0]

11{0} 11{0} 8{0} 8{0} 8{0}

29lza1 28lza2 28lza3 28lza4

[23:0]

8{0}

0 1 2,3
MUX4

128128128

LZC32 LZC32 LZC32 LZC32

128

32 32 32 32

lzaq

Lzaq[127:96] Lzaq[95:64] Lzaq[63:32] Lzaq[31:0]

LZD Logic LZD Logic

LZD Logic

55

55

6 6

7

1 1 1 1

1 1

ns1

ns2

ns4

ns3nq

nd1 nd2

29 28 28 28

B 113

29 28 28 28

A 113

[23:0][23:0][23:0][24:0]

op_mode

(a) (b)

Fig. 10. The circuit of MANT_ADD&LZD block

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 51 Volume 9, 2018

128-bit LZC unit and produces a 7-bit number. As
shown in Fig. 10(b), nq represents the l eading zero
number in q uadruple precision mode in the third
pipeline stage, nd1 and nd2 in double precision
mode, and ns1, ns2, ns3, ns4 in single precision
mode.

In FAR path, the block ALIGN in Fig. 6 is used to
complete the alignment task in various precision
modes. To s upport single, double and quadruple
precision mode, the ALIGN block is different from a
traditional barrel shifter. T he ALIGN block receives

frac_small and the adj usted exponent differences
shift1, shift2, shift3, shift4 as its inpu t operands and
produces a s hifted 113-bit num ber frac_align and
three 4-bit signals: g_far, r_far and s_far as shown
in Fig. 6. The architecture of the ALIGN block we
proposed is illustrated in Fig. 11. If the operation is
quadruple precision mode (op_mode equals to 0),
the first column of multiplexers (MUX1 to MUX19)
is used to right shift the high order 57 bits of q, the
second column of multiplexers (MUX5 to MUX20)
is used to right shift the low order 56 bits of q, and
the third column of multiplexers (MUX6 to MUX21)

MUX1
0 1

MUX3
0 1,2,3

MUX4
0 1

MUX5
0 1

MUX6
0 1

MUX7
0 1

MUX10
0 1

MUX13
0 1

MUX16
0 1

MUX19
0 1

MUX8
0 1

MUX9
0 1

MUX11
0 1

MUX12
0 1

MUX14
0 1

MUX15
0 1

MUX17
0 1

MUX18
0 1

MUX20
0 1

q

113

64{0},q{112‐64}

113

q1 113
q1{112‐56} 57

q1{112‐56}
32{0},q1{112‐88}

57{0}

57

d1 57

16{0},d1{56‐16}

d2 57
8{0},d2{56‐8}

d3 57

d4 57

d5 57

4{0},d3{56‐4}

00,d4{56‐2}

0,d5{56‐1}

57

MUX23
0 2,3 1

shift1{6}

shift2shift1{5‐0}

shift1{5}

shift1{4}

shift1{3}

shift1{2}

shift1{1}

shift1{0}

56

56

56

56

56

57

57

57

57

57

6shift124

shift124{5}

shift124{4}

shift124{3}

shift124{2}

shift124{1}

q1{55‐0}

q2 57

q2{31‐0},q1{55‐32} 32{0},q2{56‐32}

d6 d7

d8 d9

d10

d12

d11

d13

d14 d15

16{0},d7{56‐16}

8{0},d9{56‐8}

4{0},d11{56‐4}

00,d13{56‐2}

d7{15‐0},d6{55‐16}

d9{7‐0},d8{55‐8}

d11{3‐0},d10{55‐4}

d13{1‐0},d12{55‐2}

d15{0},d14{55‐1}

56

57 56

r1 r2

0,shift4

MUX2
0,1 2,3

MUX22
0 2,3 1

MUX21
0 1

57r3

0,d15{56‐1}

shift124{0}

57

57

q{23‐0},33'h0

shift2shift1{5‐0}

0,shift3

6shift123

shift123{5}

shift123{4}

shift123{3}

shift123{2}

shift123{1}

shift123{0}

op_mode

op_mode

shift1

7

4{0}r1{56‐28} r2{55‐28} 4{0} r3{56‐33}

q{79‐56}

2
4
‐b
it Trad

itio
n
al B

arre
l Sh

ifte
r

Shift2{4‐0}

24 5

6 66 6 66

24r4

r4

MUX24
0,1 2,3

r1 r2

113 113

113

out

op_mode

Fig. 11. The ALIGN block supports single, double and quadruple mode

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 52 Volume 9, 2018

plus MUX3 are used to concatenate the low and high
order bits. I n double precision mode (op_mode
equals to 1), 0 is passed t o q2 through MUX2 and
MUX3, then the first column and the second column
of multiplexers works independentl y to right shift
two 53-bits numbers. In single pre cision mode
(op_mode equals to 2 or 3), shift3 is m ultiplexed
through MUX22 and shift4 is multiplexed through
MUX23, and the fourth single mantissa is passed to
d7 through MUX2, MUX3 and MUX6. The first
single precision m antissa is contained in the hig h
order 29 bits of d1 and t he third sing le precision
mantissa is contained in the high order 28 bits of d6.
The first, second and t hird column of multiplexers
works independently to accomplish the right shifting
of the first, third and fourth single precision
mantissa. Since there a re only three colum ns of
multiplexers, we use another tradit ional barrel
shifter with the width of 24 bits t o right shift t he
second single precision mantissa as illustrated in Fig.
11. The l ogics of produc ing guard, rounding and
sticky bits fo r various operating m odes are simple
and not drawn in Fig. 11 for simplicity.

3.2 Stage 2

The architecture of stage 2 is shown in Fig. 12. In
pipeline stage 2, the aligned mantissa s frac_align
and frac_large in FAR path are add ed/subtracted
through ADDER_FAR block. Also th e guard (g),
round (r) and sticky (s) bits of mantissa re sult are
determined in this stage. GRSi and RMi (i=1,2,3,4)
blocks are similar to the GRS_LOGIC block in Fig.
2(d) and the RM_DEC block i n Fig. 2(e). RMi
blocks are u sed to obtain the rounding enabling
signal rd_near, up_f and up_c.

In FAR pat h, if the e ffective operation is
subtraction (eff_op[i]=1), each part of frac_align is
complemented through the XORi (i=1,2,3,4,5,6,7)
gate and m ultiplexed through MUX1 in various
precision modes, and t hen added t o frac_large
through ADDER_FAR block. The ADDER_FAR
block is a FPPA2 but slightly different from the one
described previous in Section 2. The flag signal
flag1 generating SP1_f and carry out signals cout_f
are similar to that described in Stage 1 in this
Section. The flag signal flag2 generating SP2_f is as
following:
quadruple:

 flag2[0]=0, flag2[1]=1,
 flag2[i]=P[i-1]^G[i-2]flag2[i-1] (i>1);

double:
flag2[0]=0, flag2[1]=1,

flag2[56]=0, flag2[57]=1,
flag2[i]=P[i-1]^G[i-2]flag2[i-1] (i≠0,1,56,57);

single:
flag2[0]=0, flag2[1]=1,
flag2[28]=0, flag2[29]=1,
flag2[56]=0, flag2[57]=1,
flag2[84]=0, flag2[85]=1,
flag2[i]=P[i-1]^G[i-2]flag2[i-1]

(i≠0,1,28,29,56,57,84,85);
S_f=frac_large+frac_tmp, SP1_f=S_f^flag1,

SP2_f=S_f^flag2.
The mantissa results S_c and SP1_c of CLOSE

path in St age1 are rounded through R_Ci
(i=1,2,3,4,5,6,7) blocks and m ultiplexed through
MUX2, then normalized through t he
NORMALIZATION block. The R_Ci logic is
identical to the roundi ng logic in Fi g. 2(f). The
NORMALIZATION block is similar to the ALIGN
block we described in Fig. 11 except that its shifting
direction is l eft. In Fig. 12, the m ultiplexors from
MUX3 to MUX9 are used to correct th e LZA error.
The mechanism of LZA error correction in various
precision modes is exa ctly the same a s that
described in single- mode adder. Then according to
precision mode, the results and MSBs are extended
and multiplexed through MUX10 and MUX11.

3.3 Stage 3
The third pipeline stage of the triple-mode
quadruple precision floating-point adder is shown in
Fig. 13 and Fig. 14. In stage 3, the computing results
of mantissas of FAR path is rounded, the exponents
of both FAR and CLOSE path are adjusted, and the
exceptions are detected.

In Fig. 13, R_F1 block is used to round the
mantissas result of quadruple precision o perands,
MUX1 and MUX8 are used to left shift the rounded
result by at most 2 bits. R_F2, MUX3, MUX10 and
R_F3, MUX4 and MUX11 are used for double
precision mode. Similarly, from R_F4 to R_F7, and
MUX4 to MUX14 are for single precision mode. The
implementation of each rounding logic R_Fi
(i=1,2,3,4,5,6,7) is totally identical to the logic in
Fig. 5(a). T he details of roundi ng mechanism is
presented in Section 2. The seven rounded m antissa
results are extended and m ultiplexed through
MUX15 according to precision m ode. The 113-bit
signal frac_f in Fig. 13 is the final mantissa
computing result of FAR path. The inp ut signals of
R_Fi block are shown at the top of Fig. 13.

The four EXACTi (i=1,2,3,4) blocks and f our
EXCEPTIONi blocks are identical to the ones in Fig.

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 53 Volume 9, 2018

5(b)(c) and used to produc e the invalid, inexact and
overflow signals. The details of mechanism is
described in Section 2 stage 3. The signal expj_inf
(j=1,2,3,4) is generated in the process of adjusting
exponents of FAR path shown in Fig. 14.

In Fig. 1 4, like the method used in sin gle-mode
adder, four groups of exponents adjusting logic
(ADDENDi, ADDERi) are used to adjust the
exponents of FAR path. The seven AND gates ar e
used to detect whether all the bits of the adjusted
exponents are 1 in vario us precision m odes. If all
the bits of th e adjusted exponents are 1, overflo w
occurs and the signal expj_inf (j=1,2,3,4) turns into
1. For example, in double precision mode, if exp1_f
is xxxx11111111111, exp1_inf is asserted through

MUX20. The ADDENDi block is completely
identical to the one in Fig. 5(d).

For CLOSE path in Fig. 14, four FPPA1s are
used to subtract norm_numi from expi_large
(i=1,2,3,4) to obtain the adjusted ex ponents. The
seven OR gates are used to detect whether the
mantissa result is zero or not. F or example in
quadruple mode, when frac_c is not 0 and
exp1_cout is 0 which means the adjusted exponen t
is less than o r equal to 0, since our design does not
support subnormal number, underflow occurs
(uf1=1) and 15{0} is passed to exp1_c as the
exponent of CLOSE path. MUX22 and MUX23 are
used to select the right underflow signals in various
precision modes.

XOR1 XOR2 XOR3 XOR4 XOR5 XOR6 XOR7

5{0} 4{0} 4{0} 4{0}

113

4{0} 3{0}

113

0 1 2,3

MUX1

113

2424242453
53

113 113 53 53 53 53 24 24 24 24 24 24 24 24

B B[108:56]

1
1
3{e

[1
]} B[52:0] B[107:84] B[79:56] B[51:28] B[23:0]

5
3
{e
[1
]}

5
3
{e
[2
]}

2
4
{e
[1
]}

2
4
{e
[2
]}

2
4
{e
[4
]}

2
4
{e
[3
]}

R_C1 R_C2 R_C3 R_C4 R_C5 R_C6 R_C7

5{0} 3{0} 3{0} 3{0}

114

4{0} 2{0}

114

0 1 2,3

MUX2

114

2525
25255454

frac_rq12 frac_rd13 frac_rd24 frac_rs15 frac_rs26 frac_rs37 frac_rs48

ADDER_FAR
(FPPA2)

NORMALIZATION

1147 6 5 5

n
o
rm

_
n
u
m
1

n
o
rm

_
n
u
m
2

n
o
rm

_
n
u
m
3

n
o
rm

_
n
u
m
4

1 0
MUX3

1 0
MUX4

1 0
MUX5

1 0
MUX6

1 0
MUX7

1 0
MUX8

1 0
MUX9

fr[113:1] fr[112:0] fr[109:57] fr[108:56] fr[53:1] fr[52:0] fr[108:85] fr[107:84] fr[80:57] fr[79:56] fr[52:29] fr[51:28] fr[24:1] fr[23:0]

114fr

2424242424 2424 2453 5353 53113 113

5{0} 4{0} 4{0} 4{0}

113

4{0} 3{0}

113

5353 24 24 24 24

0 1 2,3

MUX10

113

op_mode op_mode

op_mode

fr[113] fr[109] fr[53]

{fr[108],fr[80],fr[52],fr[24]}

113113

113

113

1134

SP2_fSP1_fS_fcout_f

A

A=frac_large; B=frac_align; e=eff_op; frac_rq12={up_c[1],cout_c[1],g_c[1],S_c,SP1_c};
frac_rd13={up_c[1],cout_c[1],g_c[1],S_c[108:56],SP1_c[108:56]}; frac_rd24={up_c[2],cout_c[2],g_c[2],S_c[52:0],SP1_c[52:0]};
frac_rs15={up_c[1],cout_c[1],g_c[1],S_c[107:84],SP1_c[107:84]}; frac_rs26={up_c[2],cout_c[2],g_c[2],S_c[79:56],SP1_c[79:56]};
frac_rs37={up_c[3],cout_c[3],g_c[3],S_c[51:27],SP1_c[51:27]}; frac_rs48={up_c[4],cout_c[4],g_c[4],S_c[23:0],SP1_c[23:0]};

0 1 2,3

MUX11

{fr[113],000} {fr[109],fr[53],00}

444

4113

frac_c MSB_c

frac_large frac_align eff_op cout_csign_c g_c S_c SP1_c

1131134444113113

GRS1 GRS2 GRS3 GRS4 RM1 RM2 RM3 RM4

g, r, s rd_near, up_f, up_c

4 4 4 4 1

rd_nearg r s up_f

sign_f

44 4 4

g_f r_f s_f

2

rm

7

norm_num1

6

norm_num2

5

norm_num3

5

norm_num4

eff_opg_f r_f s_f sign_f rm sign_c

A B

frac_tmp

fr[108] fr[80] fr[52] fr[24]

Fig. 12. The second pipeline stage of the triple-mode quadruple precision floating-point adder.

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 54 Volume 9, 2018

According to the path selection signal path_sel,
the correct exponents are selected through MUX28
(29,30,31), and the corre ct mantissas are sel ected
through MUX32 (33,34,35) in various precision
modes. Then the exponents and mantissas are
multiplexed through MUX36 (37,38,39,40,41,42,43).
These eight multiplexors are used to process

exceptions. For example in double precision mode,
except[1]=except[2]:

if except[1]={res_is_nan[1],res_is_inf[1]}=01,
then 15{1} is passed to exp1, 29{0} is passed to
frac1 and 28{0} is passed to frac2. This means the
computing result of the first pair of dou ble precision
operands (D1 and D3) is an infinity. At last, the

R_F1 R_F2 R_F3 R_F4 R_F5 R_F6 R_F7

0 1
MUX1

0 1
MUX2

0 1
MUX3

0 1
MUX4

0 1
MUX5

0 1
MUX6

0 1
MUX7

0 1
MUX8

0 1
MUX9

0 1
MUX10

0 1
MUX11

0 1
MUX12

0 1
MUX13

0 1
MUX14

115115

115

rf1_2

5555

5555 5555

5555 2626

2626 2626

2626 2626 2626

26262626

rf2_2 rf3_2 rf4_2 rf5_2 rf6_2 rf7_2

rf1_1 rf2_1 rf3_1 rf4_1 rf5_1 rf6_1 rf7_1

rf1_1[113:0],0

rf_q12

rf3_1[53:0],0 rf4_1[24:0],0 rf5_1[24:0],0 rf6_1[24:0],0 rf7_1[24:0],0

rf1_2[113:0],0 rf2_2[53:0],0 rf3_2[53:0],0 rf4_2[24:0],0 rf5_2[24:0],0 rf6_2[24:0],0 rf7_2[24:0],0

5{0} 4{0} 4{0} 4{0}

113

4{0} 3{0}

113

0 1 2,3

MUX15

113

rf1
_
3
[1
1
4:2

]

rf2
_
3
[5
4
:2
]

rf3
_
3
[5
4
:2
]

rf4_3[25:2]
rf5_3[25:2]

rf6_3[25:2]
rf7_3[25:2]

[114]

[114]

[54]

[54]

[54] [25]

[25] [25]

[25] [25]

[25] [25]

[25]

frac_f

2 1 0
MUX16

2 1
MUX17

EXACT1EXACT2EXACT4 EXACT3

EXCEPTIO
N1

EXCEPTIO
N2

EXCEPTIO
N4

EXCEPTIO
N3

11 1 1

111 1

222 2

except[1]except[2]except[4] except[3] exp1_infexp2_infexp4_inf exp3_inf

invalid[4]
Inexact[4]

overflow[4]

1
1

1
1
1

1
1
1

1

1
1

1

invalid[3]
Inexact[3]

overflow[3]

inval id[1]
Inexact[1]

overflow[1]

invalid[2]
Inexact[2]

overflow[2]

11 11

rf_q12=(eff_op[1], sign_f[1], cout_f[1], S_f, SP1_f, SP2_f, g[1], r[1], s[1], up_f[1], rd_near)
rf_d13=(eff_op[1], sign_f[1], cout_f[1], S_f[108:56], SP1_f[108:56], SP2_f[108:56], g[1], r[1], s[1], up_f[1], rd_near)
rf_d24=(eff_op[2], sign_f[2], cout_f[2], S_f[52:0], SP1_f[52:0], SP2_f[52:0], g[2], r[2], s[2], up_f[2], rd_near)
rf_s15=(eff_op[1], sign_f[1], cout_f[1], S_f[107:84], SP1_f[107:84], SP2_f[107:84], g[1], r[1], s[1], up_f[1], rd_near)
rf_s26=(eff_op[2], sign_f[2], cout_f[2], S_f[79:55], SP1_f[79:55], SP2_f[79:55], g[2], r[2], s[2], up_f[2], rd_near)
rf_s37=(eff_op[3], sign_f[3], cout_f[3], S_f[51:28], SP1_f[51:28], SP2_f[51:28], g[3], r[3], s[3], up_f[3], rd_near)
rf_s48=(eff_op[4], sign_f[4], cout_f[4], S_f[23:0], SP1_f[23:0], SP2_f[23:0], g[4], r[4], s[4], up_f[4], rd_near)
exact_q12=(eff_op[1], cout_f[1], path_sel[1], g[1], r[1], s[1], g_c[1], S_f[112], S_f[111], S_f[0], MSB_c[1])
exact_d13=(eff_op[1], cout_f[1], path_sel[1], g[1], r[1], s[1], g_c[1], S_f[108], S_f[107], S_f[56], MSB_c[1])
exact_d24=(eff_op[2], cout_f[2], path_sel[2], g[2], r[2], s[2], g_c[2], S_f[52], S_f[51], S_f[0], MSB_c[2])
exact_s15=(eff_op[1], cout_f[1], path_sel[1], g[1], r[1], s[1], g_c[1], S_f[107], S_f[106], S_f[84], MSB_c[1])
exact_s26=(eff_op[2], cout_f[2], path_sel[2], g[2], r[2], s[2], g_c[2], S_f[79], S_f[78], S_f[56], MSB_c[2])
exact_s37=(eff_op[3], cout_f[3], path_sel[3], g[3], r[3], s[3], g_c[3], S_f[51], S_f[50], S_f[28], MSB_c[3])
exact_s48=(eff_op[4], cout_f[4], path_sel[4], g[4], r[4], s[4], g_c[4], S_f[23], S_f[22], S_f[0], MSB_c[4])

rf_d13 rf_d24 rf_s15 rf_s26 rf_s37 rf_s48

exact_q12exact_s15exact_s26 exact_d24

exact_s37exact_s48

exact_d13

op_mode

eff_op sign_f cout_f g r s S_f SP1_f SP2_f up_f rd_near MSB_c

exp1_inf

exp2_inf

exp3_inf

exp4_inf

113 113 113 1 44444444

113

4

except

1

1

1

1

Fig. 13. Rounding of FAR path and exception detection in Stage 3

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 55 Volume 9, 2018

final 128-bit result is multiplexed through MUX42
according to the precision mode.

4 Synthesis Results
To make a complete comparison, the triple-m ode
quadruple, dual-mode quadruple, single-mode
quadruple, double and s ingle precision floatin g-
point adders are implemented in Verilog-HDL using
our proposed architecture. All the adders are in two
forms: combinational and pipelined with three
stages. Our proposed designs are validated by
functional verification, performing a simulation with
40000 random normal vectors plus corner/exception
vectors. The vectors combination in three precision

modes are presented in Table 4. A, B are two input
floating point numbers, normal in Table 4 denotes a
random normal nu mber, INF denotes infinit y and
equal is also a random norm al number but
indicating A=B. Because subnorm al number is not
supported, the test vector has no subnormal number
in Table 4. The EDA tools we used is Synops ys
VCS-2014.03. To evalua te the designs, all the
designs in com binational and pipelin e form are
entirely synthesized using S ynopsys Design
Compiler 2013.12-SP5.

For we m ostly concern a bout performance, so
the logic s ynthesis criteria is in terms of dela y. In
synthesis process, we applied Synops ys’s
Topographic technique, which can obt ain the best

ADDEND1

ADDER1 ADDER2 ADDER3 ADDER4

2 1 0
MUX18

ADDEND2 ADDEND3 ADDEND4

2 1
MUX19

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15 15 11 11 8 88 8

e
ff_

o
p
[1
]

e
ff_

o
p
[2
]

co
u
t_
f[1

]

co
u
t_
f[2

]

e
ff_

o
p
[3
]

co
u
t_
f[3

]

e
ff_

o
p
[4
]

co
u
t_
f[4

]

S_
f[2

3
]

S_
f[2

2]

S_
f[5

1]

S_
f[5

0
]

S_
f[1

1
2]

S_
f[1

1
1]

S_
f[1

0
8]

S_
f[1

0
7]

S_
f[1

0
7]

S_
f[1

0
6]

S_
f[5

2]
S_
f[5

1]

S_
f[7

9
]

S_
f[7

8
]

AND AND AND AND

15 11 88

1

FPPA1 FPPA1 FPPA1 FPPA1

0 1 2,3

MUX22
1 2,3

MUX23
0 1
MUX24

0 1
MUX25

0 1
MUX26

0 1
MUX27

15{0} 11{0} 8{0} 8{0}

1 1

1
1

1

15 11 8 8

1

1
1

1
1

0 1
MUX28

0 1
MUX29

0 1
MUX30

0 1
MUX31

path_sel[1] path_sel[2]

exp1

path_sel[4]

0 1
MUX32

0 1
MUX33

0 1
MUX34

0 1
MUX35

path_sel[1] path_sel[2] path_sel[3] path_sel[4]

15 15 11 11 8 8 8 8 29 29 28 28 28 28 28 28

frac_f[112:84] frac_c[112:84] frac_f[83:56] frac_c[83:56] frac_f[55:28] frac_c[55:28] frac_f[27:0] frac_c[27:0]

exp1_f exp2_f exp3_f

exp2_cexp1_c exp3_c exp4_c

MUX44

28282829881115

exp2 exp3 exp4 frac1 frac2 frac3 frac4

128 128 128

{sign1,exp1,frac1[27:0],frac2,frac3,frac4} {sign1,exp1[10:0],frac1[23:0],frac2,sign2,exp2,frac3[23:0],frac4} {sign1,exp1[7:0],frac1[22:0],sign2,exp2[7:0],frac2[22:0],sign3,exp3,frac3[22:0],sign4,exp4,frac4[22:0]}

0 1 2,3

128

result

1 1

113 53 24 53 24 24 24

frac_
c[1

0
8:5

6
]

frac_
c[1

0
7:8

4]

frac_
c[5

2:0
]

frac_
c[7

9
:5
6]

frac_
c[5

1
:2
8]

frac_
c[2

3
:0
]

exp1_large exp2_large exp3_large exp4_large norm_num1

n
o
rm

_
n
u
m
2

n
o
rm

_
n
u
m
3

n
o
rm

_
n
u
m
4

MSB_c[2]MSB_c[1] MSB_c[3] MSB_c[4]

op_mode op_mode

path_sel[3]

exp4_f

uf1 uf2 uf3 uf4

underflow={uf1,uf2,uf3,uf4}

4

2 1 0

MUX36

15{1}

2 1 0

MUX37

11{1}

2 1 0

MUX38

8{1}

2 1 0

MUX39

8{1}

2 1 0

MUX40

29{1} 29{0}

2 1 0

MUX41

28{1} 28{0}

2 1 0

MUX42

28{1} 28{0}

2 1 0

MUX43

28{1} 28{0}

exp1_inf

exp2_inf

exp3_inf

exp4_inf

op_mode

113

frac_f

113 48811158811154

exp1_large exp2_large exp3_large exp4_large norm_num1 norm_num2 norm_num3 norm_num4 frac_c MSB_cpath_sel

e
xp
1
_
co
u
t

e
xp
2
_
co
u
t

e
xp
3
_
co
u
t

e
xp
4
_
co
u
t

2 2 2 2 2 2 2

except[1] except[2] except[3] except[4] except[1] except[2] except[3] except[4]

2

8

except

OR
OR

OR
OR OR OR OR

1

AND AND AND

[10:0] [7:0][14:0] [7:0][10:0]

0 1 2,3

MUX20
1 2,3

MUX21

8 8

1 1

1

exp4_infexp3_inf

Fig. 14. Exponent adjustment of both FAR and CLOSE path in Stage 3

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 56 Volume 9, 2018

correspondence between sy nthesis and placement
route results. Table 5 shows the delay , Table 6
shows the area and Table 7 shows the power of all
the adders w e implemented. In all the three tables,
PIPE means the design is in pipeline for m, COMB
denotes the design is in combinational form and
PIPE(RR) means that the design in pipeline for m is
synthesized with Register Repositioning technique.
The delay, area and power are also compared to the
results that presented in [27] and [31]. The delay is
represented in nanosecond and FO4, and the area is
represented in square micrometer and the number of
gates. The logic s ynthesis library we used is TSMC
65 nm CMOS standard cell library. The are a of the
minimum inverter gate in our used library is 1.44
μm2, and the delay of FO4 is roughly 0.0325 ns. The
decimal number in parentheses in each row of Table
5 is the period of constraining clock.

In Table 5, f or pure combinational cir cuits, the
triple-mode adder has roughly 10% more delay (2.0
ns VS 1.81 ns), compared to single-mode quadruple
precision adder. Since t here is no triple-mode
floating-point adder in pr evious literature, we use
dual-mode adder im plemented with t he proposed
architecture to compare performance with previous
research work. The delay in FO4 of our proposed
dual-mode adder is 58, just 67% of the delay (87)
presented in [31]. With pipeline form , the delay of
stage 1, stage 2 and stage 3 is 1.09ns , 1.06ns and
1.08ns respectively for triple-mode adder, and
0.92ns, 0.91ns, 0.92ns for dual-mode quadruple

precision adder. The triple-m ode adder in pipeline
form has roughly 22% more delay than single-mode
quadruple precision adder, and the quadruple
precision dual-mode adder has 13% more delay. The
worst delay of our pro posed dual-mode adder is
29.2 in FO4 compared to 31.8 presented in [27]. The
dual-mode adder presented in [27] has no exception
processing circuit. Taking int o this account, our
proposed architecture is better than that of [27].
Compared to the total latency 113.6(28.4*4) in FO4
presented in [31], the dual-mode adder we designed
has a faster speed which is 87.6 (29.2*3) in FO4.
The total latency of the triple-mode adder we
designed is 101.4 (3 3.8*3) is also smaller than that
in [31]. Besides that, our proposed dual-mode and
triple-mode adder is 128 bits, and th e dual-mode
adder of [31] is 64 bits. By applying register
repositioning technique, o ur designed single-mode,
dual-mode and triple-m ode quadruple precision
adder can run at 125 0MHz, 1176MHz and
1075MHz respectively (clock period is 0 .8ns,
0.85ns and 0.93ns respectively).

In Table 6, t he area of our designed quadruple
precision triple-mode adder in com binational and
pipeline form is 66916 an d 71290 μm2 respectively.
After register repositioning, the area changes to
85013 μm2. The gate num ber of our designe d
quadruple precision triple-mode adder in
combinational and pipeli ne form is 4646 9 and
49507 respectively. From Table 6, we c an conclude
that the area of higher precision adder is rou ghly

Table 4. Testing vector patterns including exceptions and corners
operand exception and corners, 100 random vectors for normal number in each case 40000 random vectors

A NaN NaN INF INF NaN normal INF normal 0 equal normal

B NaN INF NaN INF normal NaN normal INF 0 equal normal

Table 5. Latency of the proposed designs

LATENNCY Single Double Quad Quad
(Dual-Mode)

Quad
(Tri-Mode)

[27]Quad
(Dual-Mode)

(0.11μm)

[31]Double
(Dual-Mode)

(0.18μm)

COMB
(ns) 1.34(74%) 1.54(85%) 1.81(100%) 1.90(105%) 2.00(110%) -- 7.84

FO4 41 47 55 58 62 -- 87

PIPE

1 0.66(0.67) 0.78(0.8) .0.89(0.9) 0.92(0.95) 1.09(1.10) 0.74 --

2 0.50(0.67) 0.62(0.8) 0.71(0.9) 0.91(0.95) 1.06(1.10) 1.19 --

3 0.65(0.67) 0.74(0.8) 0.84(0.9) 0.92(0.95) 1.08(1.10) 1.59 --

worst
(ns) 0.66(74%) 0.78(88%) 0.89(100%) 0.92(113%) 1.09(122%) 1.59 2.56(2.56*4)

FO4 20.6 24.6 27.7 29.2 33.8 31.8 28.4(4 stages)

PIPE
(RR)

1,2,3 0.58(0.6) 0.69(0.7) 0.78(0.8) 0.83(0.85) 0.90(0.93) -- --

worst
(ns) 0.58(75%) 0.69(88%) 0.78(100%) 0.83(106%) 0.90(116%) -- --

FO4 17.8 21.5 24.0 26.2 28.6 -- --

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 57 Volume 9, 2018

two times o f that of lower precisio n adder. For
example, when the circuit is pure combinational, the
area of 32-bi t adder is 10 639μm2 while the area of
64-bit adder is 2188 5μm2; when t he circuit is
pipelined, the area of 64-bit adder i s 24243μm2
while the area of 128-bit adder is 50268μm2. Since
the dual-mode adder presented in [31] is 64 bits, the
number of g ates is approximately estimated to be
2*10794 when extended to 128 bits. The gate
number of dual-m ode adder we designed is 44 323
which is greater than 2*1079 4. So t he two-path
algorithm is not suitable for area-efficient design.
The gate count of our proposed dual-mode
quadruple precision adder is onl y 51.1% of that in
[27], which proves that the proposed architecture is
more area-efficient than [27]. Compared to a
combination of four sin gle precision, two dou ble
precision and one quadr uple precision adder, the
area saving of the pr oposed triple-mode adder is
47.4%, 52.6% and 52.3% in combinational, pipeline
and register repositioning form respectively. The
area saving is com puted using t he following
equation:

100% - [(4*S+2*D+Q)-T]/(4*S+2*D+Q)*100%,
S, D, Q and T are the area of single- mode single,
double, quadruple precision and triple-mode adder.
 The power of the triple-m ode adder in
combinational circuit is 9.93mW, as shown in Table
7. For pipelining and register repositioning circuit ,
the power of the triple-mode adder is 32.86mW and
42.08mW. As seen in T able 7, the registers of
pipelined and register-repositioning circuits
consumes 21.13mW and 29.36mV respectively. The
aggressive rising in power is mainly contributed by
registers which dissipate much internal power even
when clock is deactivated.

5 Conclusion
This paper presents an architecture of improved
two-path algorithm for floating-po int adders. By
using flagged parallel prefix adder (FPPA) to
replace comparator and com pound adder, the
rounding process is si mplified and delay is
decreased. Using two ways of sim ple LZA-LZC in
[21, 23] instead of exact LZA [39-40] not on ly

Table 6. Area estimation of the proposed designs

AREA Single Double Quad
Quad

(Dual-Mode)
Quad

(Tri-Mode)

[27]Quad
(Dual-Mode)

(0.11μm)

[31]Double
(Dual-Mode)

(0.18μm)

CO
MB

Area(μm2) 10639 21885 40936 55628 66916 -- 164000*2

Gate Count 7388 15198 28428 38631 46469 -- 10288*2

PIPE

 Area(μm2) 12921 24243 50268 63528 71290 357399 172000*2

Gate Count 8793 16835 34908 44323 49507 86663#=
.

 10794*2

PIPE
(RR)

Area(μm2) 14618 29284 61293 68895 85013 -- --

Gate Count 10151 20336 42565 47844 59037 -- --

The data with a “#” is computed using scaled area: Area(65nm)=Area(110nm)*(65/110)2=357399*(65/110)2=124794

Table 7. Power estimation of the proposed designs

POWER Single Double Quad
Quad

(Dual-Mode)
Quad

(Tri-Mode)

[27]Quad
(Dual-Mode)

(0.11μm)

[31]Double
(Dual-Mode)

(0.18μm)

CO
MB

combinational 2.53 4.22 7.12 8.64 9.93 -- --

registers 0 0 0 0 0 -- --

total 2.53 4.22 7.12 8.64 9.93 -- 9.76

PIPE

combinational 3.29 5.19 8.72 10.88 11.73 -- --

registers 7.59 12.46 22.16 22.09 21.13 -- --

total 10.88 17.64 30.88 32.97 32.86 -- 48.38

PIPE
(RR)

combinational 3.3126 5.07 10.68 11.48 12.72 -- --

registers 9.7653 20.17 28.57 30.56 29.36 -- --

total 13.08 25.24 39.25 42.03 42.08 -- --

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 58 Volume 9, 2018

decreases the latency but also keep the area in a
reasonable range.

Also this paper shows how to modify the
proposed architecture to support m ultiple precision
addition/subtraction. The proposed triple-mode
quadruple precision floating-point adder can
perform four parallel single precision or two parallel
double precision or a quadruple precision
addition/subtraction. To support m ultiple precision,
we designed a triple-m ode normalization logic, a
triple-mode alignment logic and a triple-mode FPPA.
We also m odified the m ain components of our
proposed architecture including leading-zero
detection logics. The triple-mode normalization and
alignment logic require a very small increase in
delay and a relatively reasonable increase in area
compared to single-mode adder. On the other hand,
the extra multiplexors introduced to support tri ple-
mode operations result in a slightly increase in delay
and area.

The synthesis results sh ow that the proposed
triple-mode quadruple precision adder requires 10-
16% more delay than the single-mode quadruple
precision adder. The pro posed triple-mode adder
saves 47-52% area and is very useful f or SIMD and
scientific applications. To the author’s knowledge,
this is the first triple-mode floating-point adder.

References:
[1] (2012, Jan.), Avoidi ng AVX-SSE transition

penalties, Intel, [Online]. Available:
http://software.intel.com/en-us/articles

[2] (2014 Sep.) Intel64 and IA-32 architectures
optimization reference manual, Intel, [Online].
Available:
http://www.intel.com/content/www/us/en/

[3] C. L. Yan g and B. Sano, “Exploiti ng
parallelism in geometry processing with
general purpose processo rs and floating-point
SIMD instruction,” IEEE Transactions on
Computers, vol. 49, no. 9, 2000, pp. 934-946

[4] Naoki NISHIKAWA and Keisuke IWAI,
“Throughput and Power E fficiency Evaluation
of Block Ciphers on Kepler and GCN GPUs
Using Micro-Benchmark Analysis,” IEICE
Transactions on Information and Systems, vol.
E97-D, no. 6, 2014, pp. 1506-1515

[5] Li Rongchun, Dou Yong, “Efficient parallel
implementation of three-point Viterbi decoding
algorithm on CPU, GPU and FPGA,”
Concurrency and Computation-Practice &
Experience, vol. 26, no. 3, 2014, pp. 821-840

[6] M.Ferreira, N. Roma and Luis MS Russo,
“Cache Oblivious parallel SIMD Viterbi
decoding for sequence s earch in H MMER,”
BMC Bioinformatics, vol. 15:165, 2014

[7] Juan M. Cebrian, Lasse Natvig and J. C. Meyer,
“Performance and energy im pact of
parallelization and vectorization techniques in
modern microprocessors,” Computing, vol. 96,
no. 12, 2014, pp. 1179-1193

[8] A. Akkas, “Instruction Se t Enhancements for
Reliable Computations,” Ph.D. dissertation,
Lehigh University, 2001.

[9] D.H. Bailey, R. Barrio, J.M. Borwein, “High-
precision computation: Mathematical physics
and dynamics,” Applied Mathematics and
Computation, vol. 218, no. 20, 2012, pp.
10106-10121

[10] G. Howell, G.A. Geist, “Necessity of high
precision arithmetic for large-sc ale
computations,” in Proc. NPSC, 1995 , pp. 219–
222. Jun. 2012.

[11] IEEE Standard for Floating-Point Arithmetic,
ANSI/IEEE Standard 754-2008, Aug. 29, 2008.

[12] E. Schwarz, R. Sm ith, C. Krygowski, “The
S/390 G5 floating point unit supporting hex and
binary architecture,” 14th IEEE Symposium on
Computer Arithmetic, 1999, pp. 258-265.

[13] S. Oberman, “Design Issues in High-
Performance Floating-Point Arithmetic Units,”
Ph.D. dissertation, Dept. Elect. Eng., Stanford
University, Stanford, 1996.

[14] A. Beaumont-Smith, N. Burgess, “ Reduced
latency IEEE floating-point standard adder
architectures,” 14th IEEE Symposium on
Computer Arithmetic, 1999, pp. 35–43.

[15] P. M. Seidel, G. Even, “Delay -optimized
implementation of IEEE floating-point
addition,” IEEE Transacti ons on Com puters,
vol. 53, no. 2, 2004, pp. 97–113

[16] M. Farmwald, “On t he Design of High-
Performance Digital Arithmetic Units,” Ph.D.
Dissertation, Stanford University, Stanford,
1981.

[17] S. Oberman, H. Al-Twaijry, M. Fl ynn, “A
SNAP project: design of floati ng-point
arithmetic units,” 13th IEEE Symposium on
Computer Arithmetic, 1997, pp. 156-165.

[18] J. Bruguera and T. Lang, “Roun ding in
floating-point addition using a com pound
adder,” Techinical report, University of
Santiago de Compostela, 2000.

[19] P. M. Ko gge and H. S. Stone, “A parallel
algorithm for the efficient solution of a general
class of recurrence equations,” IEEE

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 59 Volume 9, 2018

Transactions on Computers, vol. C-22, no. 8,
1973, pp. 786–793

[20] N. Bruguera, “The flagged prefix adder for dual
addition,” Proceeding of SPIE - The
International Society for Optical Engineering,
1998, pp. 567-575

[21] G. Oklobdzija, “An Alg orithmic and Novel
Design of a Leading Zero Detector Circuit:
Comparison with Logic Synthesis,” IEEE
Transactions on VLSI Systems, vol. 2, no. 1,
1994, pp. 124-128

[22] V. Oklobdzija, “Comment on “Leading-zero
anticipatory logic for high-speed floating point
addition”,” IEEE Journal of Solid-State
Circuits, vol. 32, no. 2, 1997, pp. 292–293

[23] H.Suzuki and H. Morinaka, “Leading-Zero
Anticipatory Logic for High-Speed Floatin g
Point Addition,” IEEE Journal of Solid-State
Circuits, vol. 31, no. 8, 1996, pp. 1157-1164

[24] G. Dimitrakopoulos, K. Galanopoulos, C.
Mavrokefalidis and D. Nikolos, “Low -Power
Leading-Zero Counting and Anticipation Logic
for High-Speed Floating Point Units,” IEEE
Transactions on VLSI Systems, vol. 16, no. 7 ,
2008, pp. 837-850

[25] J. D. Brugu era and T. Lang, “Leading-one
prediction with concurrent position correction,”
IEEE Transactions on Com puters, vol. 48, no.
10, 1999, pp.1083–1097

[26] A. Akkas, “Dual-m ode quadruple precision
floating-point adder,” 9th Euromicro
Conference on Digital System Design, Cavtat,
CROATIA, 2006, pp. 211-220

[27] Akkas, “Dual-mode floating-point adder
architectures,” Journal of Systems Architecture,
vol. 54, no. 12, 2008, pp. 1129-1142

[28] Akkas and M. Schulte, “Dual-mode floating-
point multiplier architectures with parallel
operations,” Journal of Systems Architecture,
vol. 52, no. 10, 2006, pp. 549-562

[29] Akkas and M. J. Schulte, “A Quadruple
Precision and Dual Double Precision Floating-
Point Multiplier,” Euromicro Symposium on
Digital System Design, 2003, pp. 76-81.

[30] Isseven and A. Akka s, “A Dual- mode
quadruple precision floating-point divider,”
40th Asilomar Conference on Signals, Systems
and Computers, 2006, pp. 1697-1701.

[31] M. K. Jaiswal and Ray C.C. Cheung, “Unified
Architecture for Double /Two-Parallel Single
Precision Floating Poi nt Adder,” IEEE
Transactions on Circuits and Systems II-
Express Briefs, vol. 61, no. 7, 2014, pp. 521-
525

[32] D. Tan, C. E. Lemonds and M . J. Schulte,
“Low-Power Multiple-Precision Iterative
Floating-Point Multiplier with SIMD Support ,”
IEEE Transactions on Computers, vol. 58, n o.
2, 2009, pp. 175-187

[33] M. K. Jaiswal and Ray C.C. C heung,
“ConFigurable Architecture for Double/Two-
Parallel Single Precision Floating Point
Division,” Proceedings of IEEE Computer
Society Annual Symposium on VLSI, 2014, pp.
332-337.

[34] K. Manolopoulos, D. Reisis, “An Efficient
Multiple Precision Floating-Point Multiplier,”
18th IEEE International Conference on
Electronics, Circuits and Systems, 2011, pp.
153-156.

[35] A. Baluni and F. Merchant, “A Full y Pipelined
Modular Multiple Precision Floating Point
Multiplier With Vector Support,” International
Symposium on Electronic System Design, 2011,
pp. 45-50.

[36] Libo Huang and Li Shen, “A Ne w Architecture
for Multiple Precision Floating-Point Multiply-
Add Fused Unit Design,” 18th IEEE
Symposium on Computer Arithmetic, 2007, pp.
69-76.

[37] K. Manolopoulos and D. Reisis, “An Efficient
Dual-Mode Floating-Point Multiply-Add Fused
Unit,” in Proc. 17th IEEE International
Conference on Electronics, Circuits and
Systems, 2010, pp. 5-8.

[38] M. Gok and M. M. Ozbilen, “Multi-functional
floating-point MAF desig ns with d ot product
support,” Microelectronics Journal, vol. 39, pp.
30-43, 2007.

[39] A. Verma and A. K. Verma, “Hy brid LZA: A
Near Optimal Implementation of the Leading
Zero Anticipator,” 14th Asia and South Pacific
Design Automation Conference, 2009, pp. 203-
209.

[40] N. K. Reddy, M. C. Sekhar, “A Nov el Low
Power Error Detection Logic for I nexact
Leading Zero Anticipator in Floating Point
Units,” 27th International Conference on VLSI
Design, 2014, pp. 128-132.

WSEAS TRANSACTIONS on ELECTRONICS Liu De, Wang Mingjiang

E-ISSN: 2415-1513 60 Volume 9, 2018

